• Login
    View Item 
    •   UMB Digital Archive
    • School, Graduate
    • Theses and Dissertations All Schools
    • View Item
    •   UMB Digital Archive
    • School, Graduate
    • Theses and Dissertations All Schools
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UMB Digital ArchiveCommunitiesPublication DateAuthorsTitlesSubjectsThis CollectionPublication DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    Display statistics

    Molecular Determinants of Pulmonary Mucormycosis and Aspergillosis

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Watkins_umaryland_0373D_11071.pdf
    Size:
    31.86Mb
    Format:
    PDF
    Download
    Author
    Watkins, Tonya Nicole
    Advisor
    Bruno, Vincent, Ph.D.
    Date
    2019
    Type
    dissertation
    
    Metadata
    Show full item record
    Abstract
    Mucormycosis and aspergillosis are invasive fungal infections with very limited treatment options and extremely high mortality rates. During both pulmonary mucormycosis and aspergillosis, inhaled fungal spores must adhere to and invade airway epithelial cells in order to establish infection. The molecular mechanisms governing these interactions in the context of each disease are not completely understood. Mucormycoses are caused by fungi belonging to the Order Mucorales, with ~70% of all cases caused by Rhizopus species. To better understand the molecular mechanisms of fungal invasion during mucormycosis, an unbiased survey of the host transcriptional response to Mucorales infection in in vitro and in vivo murine models of pulmonary mucormycosis using RNA-seq was performed. Network analysis revealed activation of host receptor tyrosine kinase (RTK) signaling pathways and progesterone (PG) signaling pathways. By combining established models of mucormycosis, transcriptomics, cell biology, and pharmacological approaches, we demonstrated that Mucorales activate epidermal growth factor receptor (EGFR), erb-b2 tyrosine kinase 2 (ErbB2), and platelet-derived growth factor receptor (PDGFR) signaling to induce fungal uptake into airway epithelial cells. Furthermore, we demonstrated that inhibition of EGFR signaling with existing FDA-approved cancer drugs significantly increased survival following Rhizopus delemar infection in mice. We also demonstrated that inhibition of progesterone receptor (PGR) signaling decreases R. delemar invasion of airway epithelial cells in vitro. These studies enhance our understanding of how Mucorales invade host cells during the establishment of pulmonary mucormycosis and provide a proof-of concept for repurposing FDA-approved cancer drugs that target RTK function. Aspergillus fumigatus is responsible for 90% of all aspergillosis cases. To better understand how A. fumigatus senses and responds to airway epithelial cells during pulmonary aspergillosis, we used RNA-seq to analyze the transcriptomes of two commonly used clinical A. fumigatus isolates, Af293 and CEA10, during an in vitro infection model of airway epithelial cells. In this analysis, we identified 47 genes that were up-regulated in both strains and enriched for genes involved in iron acquisition, a mechanism required for A. fumigatus virulence in the mammalian host. Knowledge gained from this work could aid in the identification of therapeutic and prevention targets to combat mucormycosis and aspergillosis.
    Description
    2019
    Molecular Medicine
    University of Maryland, Baltimore
    Ph.D.
    Keyword
    Lung Diseases, Fungal--genetics
    Mucormycosis—genetics
    Pulmonary Aspergillosis--genetics
    Identifier to cite or link to this item
    http://hdl.handle.net/10713/9588
    Collections
    Theses and Dissertations School of Medicine
    Theses and Dissertations All Schools

    entitlement

     
    DSpace software (copyright © 2002 - 2022)  DuraSpace
    Quick Guide | Policies | Contact Us | UMB Health Sciences & Human Services Library
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.