• Login
    View Item 
    •   UMB Digital Archive
    • School, Graduate
    • Theses and Dissertations All Schools
    • View Item
    •   UMB Digital Archive
    • School, Graduate
    • Theses and Dissertations All Schools
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UMB Digital ArchiveCommunitiesPublication DateAuthorsTitlesSubjectsThis CollectionPublication DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    Display statistics

    Role of Vaccine-Induced IgG in Protection Against Bordetella Pertussis

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Masterson_umaryland_0373D_11060.pdf
    Size:
    6.891Mb
    Format:
    PDF
    Download
    Author
    Masterson, Mary
    Advisor
    Pasetti, Marcela F.
    Date
    2019
    Type
    dissertation
    
    Metadata
    Show full item record
    Abstract
    Bordetella pertussis is a highly infectious respiratory pathogen that can induce severe bronchopneumonia and respiratory failure in infants (whooping cough). Vaccine formulations consisting of Diphtheria toxoid, Tetanus toxoid, and Acellular Pertussis (aP) components (DTaP and Tdap) protect against disease. It remains unclear how a parenteral vaccine, which primarily elicits systemic IgG, contributes to protection against a respiratory pathogen. The goal of this study was to investigate mechanisms by which vaccine-induced IgG reaches the respiratory mucosa and contributes to protection against B. pertussis infection. We hypothesized that pertussis-specific systemic IgG is transported from circulation into the airways via the neonatal Fc receptor (FcRn). To test this hypothesis, wild type mice and mice lacking FcRn (FcRn-/-) were immunized with DTaP or passively transferred DTaP-immune serum and challenged with B. pertussis. Post-challenge readouts included kinetics of Pertussis Toxin (PT) IgG in serum and bronchoalveolar lavage fluid (BALf), bacterial load quantification, and histopathology of lung tissues. WT vaccinated mice were able to clear the infection, whereas FcRn-/- vaccinated mice had residual bacterial counts and increased lung inflammation. Passive administration of DTaP-immune sera reduced lung colonization in both WT and FcRn-/- mice. However, FcRn-/- recipients exhibited moderate bronchopneumonia (absent in WT mice). The lower bacterial clearance and exacerbated tissue damage observed in actively and passively immunized FcRn-/- mice was not due to the absence of PT-IgG (or differences in IgG isotype) in BALf. Rather, WT and FcRn-/- mice had similar PT-IgG levels in serum and BALf, suggesting that FcRn-independent mechanisms mediate IgG transport across the lung. PT-IgG progressively increased in BALf of passively immunized FcRn-/- mice post-challenge (along with lung inflammation,) suggesting IgG also diffuses through damaged lung epithelium. We observed that neutrophils from FcRn-/- mice had lower B. pertussis opsonophagocytic capacity as compared to WT. This impairment in IgG-mediated antimicrobial function in the absence of FcRn could explain the increased inflammation in FcRn-/- mice. In conclusion, we have shown that pertussis-specific IgG translocation into the airways appears to be FcRn-independent, and that IgG-mediated B. pertussis neutrophil phagocytosis may contribute to bacterial clearance and tissue preservation post-infection through FcRn interactions.
    Description
    2019
    Molecular Microbiology and Immunology
    University of Maryland, Baltimore
    Ph.D.
    Keyword
    DTaP
    FcRn
    pertussis
    Immunoglobulin G
    Bordetella pertussis
    Vaccines
    Identifier to cite or link to this item
    http://hdl.handle.net/10713/9580
    Collections
    Theses and Dissertations School of Medicine
    Theses and Dissertations All Schools

    entitlement

     
    DSpace software (copyright © 2002 - 2022)  DuraSpace
    Quick Guide | Policies | Contact Us | UMB Health Sciences & Human Services Library
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.