Monomeric IL-12p40 binds partner proteins to modulate immune cell function
Authors
Advisor
Date
Embargo until
Language
Book title
Publisher
Peer Reviewed
Type
Research Area
Jurisdiction
Other Titles
See at
Abstract
Cytokines are critical mediators used by immune cells to communicate as well as protect. The IL-12 family of cytokines are made up of and subunits typically assembled within one cell and secreted as a heterodimer. IL-12p40 is the shared β-subunit for both IL-12 (paring with IL-12p35) and IL-23 (with IL-23p19). However, the IL-12p40 monomer is often secreted in excess during infections, but its biological role was not known. In this thesis we investigated the function of secreted IL-12p40 monomer in vivo with the central hypothesis that the monomer combines with multiple α-subunits in vivo to generate IL-12 as well as other heterodimeric cytokines. Consistent with this hypothesis, in chimeric mice containing mixtures of cells that can only express either IL-12p40 or IL-12p35, but not both together, we found that functionally active IL-12 was generated. This alternate two-cell pathway requires IL-12p40 from hematopoietic cells to extracellularly associate with IL-12p35 from radiation-resistant cells. The two-cell mechanism was sufficient to influence local T cell differentiation in sites distal to the initial infection and helped control systemic dissemination of a pathogen although not parasite burden at the site of infection. Broadly, this suggests that early secretion of IL-12p40 monomers by sentinel cells at the infection site may help prepare distal host tissues for potential pathogen arrival. In addition to this role in generating IL-12 through two-cell assembly, we found that IL-12p40 has a novel partner protein, CD5L. This novel heterodimer was present in the serum of uninfected mice, with differences in the basal levels between B6 and Balb/c animals, with Balb/c having higher amounts of p40-CD5L. Functionally, we found that treatment with p40-CD5L leads to IL-4 and IL-10 production by T cells. Taken together, this thesis offers at least two major fundamental advances in cytokine biology – one the concept of a two-cell assembled cytokine and second the identity of a novel TH2-promoting heterodimeric cytokine. The first has significance in immunotherapy and understanding immunity to tissue-specific modulation of immune responses. The second is expected to drive significant research on allergy, responses to parasites and immune deviation.
Data Availibility
Data / Code Location
Table of Contents
Description
University of Maryland, Baltimore
Ph.D.