Show simple item record

dc.contributor.authorPine, P.S.
dc.contributor.authorLund, S.P.
dc.contributor.authorParsons, J.R.
dc.date.accessioned2019-06-21T18:46:31Z
dc.date.available2019-06-21T18:46:31Z
dc.date.issued2018
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85043397154&doi=10.1186%2fs12864-018-4496-1&partnerID=40&md5=f1fe878319da5596311a74f6fe29cbf9
dc.identifier.urihttp://hdl.handle.net/10713/9755
dc.description.abstractBackground: The potential utility of microRNA as biomarkers for early detection of cancer and other diseases is being investigated with genome-scale profiling of differentially expressed microRNA. Processes for measurement assurance are critical components of genome-scale measurements. Here, we evaluated the utility of a set of total RNA samples, designed with between-sample differences in the relative abundance of miRNAs, as process controls. Results: Three pure total human RNA samples (brain, liver, and placenta) and two different mixtures of these components were evaluated as measurement assurance control samples on multiple measurement systems at multiple sites and over multiple rounds. In silico modeling of mixtures provided benchmark values for comparison with physical mixtures. Biomarker development laboratories using next-generation sequencing (NGS) or genome-scale hybridization assays participated in the study and returned data from the samples using their routine workflows. Multiplexed and single assay reverse-transcription PCR (RT-PCR) was used to confirm in silico predicted sample differences. Data visualizations and summary metrics for genome-scale miRNA profiling assessment were developed using this dataset, and a range of performance was observed. These metrics have been incorporated into an online data analysis pipeline and provide a convenient dashboard view of results from experiments following the described design. The website also serves as a repository for the accumulation of performance values providing new participants in the project an opportunity to learn what may be achievable with similar measurement processes. Conclusions: The set of reference samples used in this study provides benchmark values suitable for assessing genome-scale miRNA profiling processes. Incorporation of these metrics into an online resource allows laboratories to periodically evaluate their performance and assess any changes introduced into their measurement process. Copyright 2018 The Author(s).en_US
dc.description.sponsorshipThe work presented in this manuscript is jointly designed, executed and written under the auspices of an Interagency Agency Agreement between the National Cancer Institute and the National Institute of Standards and Technology, both of which are Federal Agencies supported by the funds from US Government. Additional funding comes from NCI-EDRN Grant numbers: U01CA214182, U01CA214195, U24CA115091. Part of the work was performed at JPL/Caltech under the contract to NASA, and at the Center for Data-Driven Discovery, Caltech.en_US
dc.description.urihttps://dx.doi.org/10.1186/s12864-018-4496-1en_US
dc.language.isoen-USen_US
dc.publisherBioMed Central Ltd.en_US
dc.relation.ispartofBMC Genomics
dc.subjectDashboarden_US
dc.subjectMicroRNAen_US
dc.subjectMiRNAen_US
dc.subjectProcess controlsen_US
dc.subjectReference samplesen_US
dc.titleSummarizing performance for genome scale measurement of miRNA: Reference samples and metricsen_US
dc.typeArticleen_US
dc.identifier.doi10.1186/s12864-018-4496-1
dc.identifier.pmid29510677


This item appears in the following Collection(s)

Show simple item record