• Login
    View Item 
    •   UMB Digital Archive
    • UMB Open Access Articles
    • UMB Open Access Articles 2018
    • View Item
    •   UMB Digital Archive
    • UMB Open Access Articles
    • UMB Open Access Articles 2018
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UMB Digital ArchiveCommunitiesPublication DateAuthorsTitlesSubjectsThis CollectionPublication DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    Display statistics

    Real-time scratch assay reveals mechanisms of early calcium signaling in breast cancer cells in response to wounding

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Author
    Pratt, S.J.P.
    Lee, R.M.
    Hernández-Ochoa, E.O.
    Date
    2018
    Journal
    Oncotarget
    Publisher
    Impact Journals LLC
    Type
    Article
    
    Metadata
    Show full item record
    See at
    https://dx.doi.org/10.18632/oncotarget.25186
    Abstract
    Aggressive cellular phenotypes such as uncontrolled proliferation and increased migration capacity engender cellular transformation, malignancy and metastasis. While genetic mutations are undisputed drivers of cancer initiation and progression, it is increasingly accepted that external factors are also playing a major role. Two recently studied modulators of breast cancer are changes in the cellular mechanical microenvironment and alterations in calcium homeostasis. While many studies investigate these factors separately in breast cancer cells, very few do so in combination. This current work sets a foundation to explore mechano-calcium relationships driving malignant progression in breast cancer. Utilizing real-time imaging of an in vitro scratch assay, we were able to resolve mechanically-sensitive calcium signaling in human breast cancer cells. We observed rapid initiation of intracellular calcium elevations within seconds in cells at the immediate wound edge, followed by a time-dependent increase in calcium in cells at distances up to 500μm from the scratch wound. Calcium signaling to neighboring cells away from the wound edge returned to baseline within seconds. Calcium elevations at the wound edge however, persisted for up to 50 minutes. Rigorous quantification showed that extracellular calcium was necessary for persistent calcium elevation at the wound edge, but intercellular signal propagation was dependent on internal calcium stores. In addition, intercellular signaling required extracellular ATP and activation of P2Y 2 receptors. Through comparison of scratch-induced signaling from multiple cell lines, we report drastic reductions in response from aggressively tumorigenic and metastatic cells. The real-time scratch assay established here provides quantitative data on the molecular mechanisms that support rapid scratch-induced calcium signaling in breast cancer cells. These mechanisms now provide a clear framework for investigating which short-term calcium signals promote long-term changes in cancer cell biology. Copyright Pratt et al.
    Sponsors
    This work was supported by the Kahlert Foundation and grants from the National Institutes of Health to SSM (R01-CA124704, R01-CA154624), SJPP (5T32GM008181-30), RML (T32CA154274), MIV (K01CA166576), MFS (R37-AR055099).
    Keyword
    Calcium
    Human breast cancer
    Intercellular signaling
    Mechanotransduction
    Purinergic receptor
    Identifier to cite or link to this item
    https://www.scopus.com/inward/record.uri?eid=2-s2.0-85047216878&doi=10.18632%2foncotarget.25186&partnerID=40&md5=e39ea9f15fe1d95824f2fd18bb670bea; http://hdl.handle.net/10713/9703
    ae974a485f413a2113503eed53cd6c53
    10.18632/oncotarget.25186
    Scopus Count
    Collections
    UMB Open Access Articles 2018

    entitlement

     
    DSpace software (copyright © 2002 - 2021)  DuraSpace
    Quick Guide | Policies | Contact Us | UMB Health Sciences & Human Services Library
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.