• Login
    View Item 
    •   UMB Digital Archive
    • School, Graduate
    • Theses and Dissertations All Schools
    • View Item
    •   UMB Digital Archive
    • School, Graduate
    • Theses and Dissertations All Schools
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UMB Digital ArchiveCommunitiesPublication DateAuthorsTitlesSubjectsThis CollectionPublication DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    Display statistics

    Multispecies oral biofilms studied at the single community level as a model system for spatiotemporal development of biofilms and interspecies interactions

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Author
    Chalmers, Natalia I.
    Advisor
    Kolenbrander, Paul E.
    Bavoil, Patrik M.
    Date
    2008
    Type
    dissertation
    
    Metadata
    Show full item record
    Abstract
    Oral biofilms are multispecies communities that are important in the development of the two most prevalent oral diseases---dental caries and periodontal disease. The primary initial colonizers of human enamel are streptococci, veillonellae and actinomyces. Bacteria of these genera coaggregate (cell-cell interactions between genetically distinct bacteria). The streptococci can be classified into two groups: those with receptor polysaccharides (RPS) and those with adhesins that recognize RPS. RPS mediates streptococcal intrageneric coaggregation. Besides coaggregation, veillonellae interact with streptococci metabolically by using lactic acid produced by streptococci. The hypothesis tested in this study is that coaggregation mediated interactions between streptococci and veillonellae are important for the development of oral biofilms in vivo. To translate naturally occurring interactions from undisturbed dental plaque to multispecies in vitro communities, a simple community consisting of RPS-bearing streptococci juxtaposed with veillonellae was targeted by immunofluorescence with quantum-dot-conjugated antibodies and micromanipulated from the tooth surface. Characterization of the application of quantum-dot primary immunofluorescence was accomplished and was essential for the success of this approach. An antibody-unreactive streptococcus invisible during micromanipulation was also obtained. The streptococci were identified as Streptococcus oralis and Streptococcus gordonii. The veillonellae could not be cultured; however, immunoreactive veillonellae cells were present in the original mixture and a Veillonella 16S-rRNA gene sequence was amplified. This sequence was similar to Veillonella sp. PK1910. The two streptococci coaggregated by an RPS-dependent mechanism, and both coaggregated with Veillonella sp. PK1910. Veillonella sp. PK1910 was used as a surrogate in in vitro community reconstruction. In vitro the two streptococcal isolates and Veillonella sp. PK1910 grew on saliva as the sole nutritional source and formed interdigitated multispecies clusters. Veillonella sp. PK1910 grew only in biofilms where streptococci were present. To map the spatial relationship between these species in vivo we used a novel approach integrating immunofluorescence and fluorescence in situ hybridization. Reconstruction in vitro of a community composed of Veillonella sp. PK1910, S. oralis, and S. gordonii demonstrates the vital role of RPS-mediated coaggregation in initial colonization of multispecies communities. The integrated in vitro - in vivo approach serves as a new paradigm for the study of oral biofilms and their development.
    Description
    University of Maryland, Baltimore. Biomedical Sciences-Dental School. Ph.D. 2008
    Keyword
    Biology, Microbiology
    coaggregation
    streptococci
    veillonellae
    Biofilms--growth & development
    Mouth--microbiology
    Identifier to cite or link to this item
    http://hdl.handle.net/10713/970
    Collections
    Theses and Dissertations All Schools
    Theses and Dissertations School of Dentistry

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Policies | Contact Us | UMB Health Sciences & Human Services Library
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.