• Login
    View Item 
    •   UMB Digital Archive
    • School, Graduate
    • Theses and Dissertations All Schools
    • View Item
    •   UMB Digital Archive
    • School, Graduate
    • Theses and Dissertations All Schools
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UMB Digital ArchiveCommunitiesPublication DateAuthorsTitlesSubjectsThis CollectionPublication DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    Display statistics

    Osteoblast Attachment, Proliferation and Differentiation on Implant Surfaces

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Choe_umaryland_0373N_10998.pdf
    Size:
    501.4Kb
    Format:
    PDF
    Download
    Author
    Choe, Robert
    Advisor
    Masri, Radi, 1975-
    Date
    2019
    Type
    dissertation
    
    Metadata
    Show full item record
    Abstract
    Introduction. Countless numbers of implants with different surface treatment techniques exist commercially around the world. Cell adhesion, proliferation and differentiation on all these different implant surfaces have different effects at the microscopic level. Purpose. The purpose of this project is to expand on previous osteoblast attachment studies and investigate the osteoblast attachment, proliferation, and differentiation on five different types of implant surfaces: (1) Machined surface of surface roughness (Sa) of 0.3 – 0.4 µm; (2) Anodized yellow surface 0.3 – 0.5 µm; (3) anodized yellow surface 0.8 µm; (4) SLA surface of 1.6 µm; and (5) Biodenta surface treated (BST) surface of 1 µm. BST surface (Biodenta Swiss AG, Berneck, Switzerland) is anodized during the manufacturing process to have an amorphous titanium oxide layer. This process allows the BST surface to have its surface roughness enhanced via open porosity to promote osteoconduction. Materials and Method. Human fetal osteoblast stem cells were cultured for two weeks on the five different types of implant surfaces. Three genes were examined: Collagen Type 2 (COL1A2), Runt-related transcription factor 2 (RUNX2) and Osteocalcin (BGLAP) because of their role as genetic markers of osteoblast attachment, proliferation, and differentiation. The quality of the mRNA was checked with a spectrophotometer and cDNA was synthesized for quantitative RT-PCR. Genes were analyzed by means of melting curve analysis and relative quantitative Ct calculation to determine fold change. Results. The anodized 0.3 – 0.5 µm surface displayed up-regulation of COL1A2 (n-fold of +1.589) but down-regulation of RUNX2 and BGLAP (n-fold of -1.109 and -2.624, respectively). However, the anodized 0.8 µm surface presented opposite trends for all three genes. RUNX2 and BGLAP were both up-regulated (n-fold of +1.406 and +1.778, respectively) while, COL1A2 exhibited the greatest down-regulation trend with respect to all surfaces (n-fold of -4.801). The BST specimens were the only surface type to exhibit up-regulation for all three genes. Of the three genes, COL1A2 and RUNX2 displayed the greatest fold change for the BST surface (n-fold of +2.462 and +2.688, respectively). Conclusions. mRNA expression of RUNX2, COL1A2, and BGLAP in human fetal osteoblast stem cells, cultured on five different surfaces, indicated various expression profiles. The expression of COL1A2 and BGLAP, characteristics of a more mature osteogenic phenotype, were exhibited on the rougher surface implants. Following this trend, the BST surface expressed the most mature osteogenic phenotype in this study.
    Description
    2018
    Biomedical Sciences-Dental School
    University of Maryland, Baltimore
    M.S.
    Keyword
    Cell Adhesion
    Dental Implants
    Osteoblasts
    Identifier to cite or link to this item
    http://hdl.handle.net/10713/9603
    Collections
    Theses and Dissertations School of Dentistry
    Theses and Dissertations All Schools

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Policies | Contact Us | UMB Health Sciences & Human Services Library
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.