• Login
    View Item 
    •   UMB Digital Archive
    • School, Graduate
    • Theses and Dissertations All Schools
    • View Item
    •   UMB Digital Archive
    • School, Graduate
    • Theses and Dissertations All Schools
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UMB Digital ArchiveCommunitiesPublication DateAuthorsTitlesSubjectsThis CollectionPublication DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    Display statistics

    Deciphering relatedness and population demographics in diverse population structures by leveraging haplotype and rare variant sharing detected from whole genome sequencing

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Shetty_umaryland_0373D_11053.pdf
    Size:
    48.40Mb
    Format:
    PDF
    Download
    Author
    Shetty, Amol Carl
    0000-0001-8790-7649
    Advisor
    O'Connor, Timothy D
    Date
    2019
    Type
    dissertation
    
    Metadata
    Show full item record
    Abstract
    Genealogical analysis using genomic variants is essential for a variety of applications in human genetics such as estimating population structure, migration events and evolutionary history. The 1000 Genomes Project is an example of a study of human genomic diversity and continental population structure. Multiple studies illustrate the utility of genetic variation for the reconstruction of human migratory patterns within and between continental populations and the demographic events influencing evolutionary history. Current methods for assessment of population structure and genetic relatedness use individual genetic loci and do not take full advantage of the large number of markers provided by whole genome sequencing techniques. More recently, haplotype sharing or identity by descent (IBD) estimates have been used as a promising method to elucidate demographic admixture/migratory events. This dissertation focuses on the application of IBD sharing to decipher genetic relatedness and demographic events that influence population substructure. Knowledge of genome-wide patterns of IBD sharing among individuals helped distinguish between ancient and recent demographic events and detect fine-structure among the recently expanded and admixed New World populations from Peru. This addresses the gap in knowledge regarding the population fine-structure of indigenous and admixed communities from geographically distinct regions of Peru. IBD sharing, primarily utilized to study human demography, was applied to study fine-structure and demography of haploid malarial parasite populations in Southeast Asia which helped elucidate the migratory patterns of the parasite and guide the elimination strategies of the World Health Organization (WHO). Current IBD methods accurately detect long segments based on information from common variants. However, cohorts involving cryptic relatedness mostly share short IBD segments. In light of this limitation, rare variants arising from recent dramatic events of population expansion convey more information on short IBD segments than common variants. This knowledge of IBD sharing leveraged by rare variants influences the timescales at which familial relatedness and population structure can be assessed. In sum, this dissertation illustrates the utility of IBD segments of variable lengths and the accumulation of rare variants within these segments to detect fine-scale population structure at different evolutionary timescales and fills the gaps in knowledge in both human and non-human populations.
    Description
    2019
    Human Genetics
    University of Maryland, Baltimore
    Ph.D.
    Keyword
    association analysis
    cryptic relatedness
    identity by descent
    population fine-structure
    Native American
    Genetic Association Studies
    Malaria
    Identifier to cite or link to this item
    http://hdl.handle.net/10713/9576
    Collections
    Theses and Dissertations School of Medicine
    Theses and Dissertations All Schools

    entitlement

     
    DSpace software (copyright © 2002 - 2021)  DuraSpace
    Quick Guide | Policies | Contact Us | UMB Health Sciences & Human Services Library
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.