The Streptococcus agalactiae stringent response enhances virulence and persistence in human blood
Date
2018Journal
Infection and ImmunityPublisher
American Society for MicrobiologyType
Article
Metadata
Show full item recordAbstract
Streptococcus agalactiae (group B Streptococcus [GBS]) causes serious infections in neonates. We previously reported a transposon sequencing (Tn-seq) system for performing genomewide assessment of gene fitness in GBS. In order to identify molecular mechanisms required for GBS to transition from a mucosal commensal lifestyle to bloodstream invasion, we performed Tn-seq on GBS strain A909 with human whole blood. Our analysis identified 16 genes conditionally essential for GBS survival in blood, of which 75% were members of the capsular polysaccharide (cps) operon. Among the non-cps genes identified as conditionally essential was relA, which encodes an enzyme whose activity is central to the bacterial stringent response—a conserved adaptation to environmental stress. We used blood coincubation studies of targeted knockout strains to confirm the expected growth defects of GBS deficient in capsule or stringent response activation. Unexpectedly, we found that the relA knockout strains demonstrated decreased expression of β-hemolysin/cytolysin, an important cytotoxin implicated in facilitating GBS invasion. Furthermore, chemical activation of the stringent response with serine hydroxamate increased β-hemolysin/cytolysin expression. To establish a mechanism by which the stringent response leads to increased cytotoxicity, we performed transcriptome sequencing (RNA-seq) on two GBS strains grown under stringent response or control conditions. This revealed a conserved decrease in the expression of genes in the arginine deiminase pathway during stringent response activation. Through coincubation with supplemental arginine and the arginine antagonist canavanine, we show that arginine availability is a determinant of GBS cytotoxicity and that the pathway between stringent response activation and increased virulence is arginine dependent. Copyright 2017 American Society for Microbiology.Sponsors
This work was supported by NIH/NIAID grants number R01 AI092743, R33 AI098654, and R21 AI111020 to A.J.R., John M. Driscoll, Jr., M.D. Children's Fund (Columbia University Department of Pediatrics), and the Pediatric Scientist Development Program (NIH/NICHD grant number K12 HD000850) to T.A.H.Identifier to cite or link to this item
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85039561657&doi=10.1128%2fIAI.00612-17&partnerID=40&md5=4701492be03b656ee605e6c1a0666068; http://hdl.handle.net/10713/9446ae974a485f413a2113503eed53cd6c53
10.1128/IAI.00612-17
Scopus Count
Collections
Related articles
- Analysis of two-component systems in group B Streptococcus shows that RgfAC and the novel FspSR modulate virulence and bacterial fitness.
- Authors: Faralla C, Metruccio MM, De Chiara M, Mu R, Patras KA, Muzzi A, Grandi G, Margarit I, Doran KS, Janulczyk R
- Issue date: 2014 May 20
- The putative glycosyltransferase-encoding gene cylJ and the group B Streptococcus (GBS)-specific gene cylK modulate hemolysin production and virulence of GBS.
- Authors: Forquin MP, Tazi A, Rosa-Fraile M, Poyart C, Trieu-Cuot P, Dramsi S
- Issue date: 2007 Apr
- Phenotypic and molecular characterization of hyperpigmented group B Streptococci.
- Authors: Lupo A, Ruppen C, Hemphill A, Spellerberg B, Sendi P
- Issue date: 2014 Jul
- Group B streptococcal haemolysin and pigment, a tale of twins.
- Authors: Rosa-Fraile M, Dramsi S, Spellerberg B
- Issue date: 2014 Sep
- The Abi-domain protein Abx1 interacts with the CovS histidine kinase to control virulence gene expression in group B Streptococcus.
- Authors: Firon A, Tazi A, Da Cunha V, Brinster S, Sauvage E, Dramsi S, Golenbock DT, Glaser P, Poyart C, Trieu-Cuot P
- Issue date: 2013 Feb