• Login
    View Item 
    •   UMB Digital Archive
    • UMB Open Access Articles
    • UMB Open Access Articles 2018
    • View Item
    •   UMB Digital Archive
    • UMB Open Access Articles
    • UMB Open Access Articles 2018
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UMB Digital ArchiveCommunitiesPublication DateAuthorsTitlesSubjectsThis CollectionPublication DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    Display statistics

    The cat flea (Ctenocephalides felis) immune deficiency signaling pathway regulates Rickettsia typhi infection

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Author
    Rennoll, S.A.
    Rennoll-Bankert, K.E.
    Guillotte, M.L.
    Date
    2018
    Journal
    Infection and Immunity
    Publisher
    American Society for Microbiology
    Type
    Article
    
    Metadata
    Show full item record
    See at
    https://dx.doi.org/10.1128/IAI.00562-17
    Abstract
    Rickettsia species are obligate intracellular bacteria with both conserved and lineage-specific strategies for invading and surviving within eukaryotic cells. One variable component of Rickettsia biology involves arthropod vectors: for instance, typhus group rickettsiae are principally vectored by insects (i.e., lice and fleas), whereas spotted fever group rickettsiae are exclusively vectored by ticks. For fleaborne Rickettsia typhi, the etiological agent of murine typhus, research on vertebrate host biology is facilitated using cell lines and animal models. However, due to the lack of any stable flea cell line or a published flea genome sequence, little is known regarding R. typhi biology in flea vectors that, importantly, do not suffer lethality due to R. typhi infection. To address if fleas combat rickettsial infection, we characterized the cat flea (Ctenocephalides felis) innate immune response to R. typhi. Initially, we determined that R. typhi infects Drosophila cells and increases antimicrobial peptide (AMP) gene expression, indicating immune pathway activation. While bioinformatics analysis of the C. felis transcriptome identified homologs to all of the Drosophila immune deficiency (IMD) and Toll pathway components, an AMP gene expression profile in Drosophila cells indicated IMD pathway activation upon rickettsial infection. Accordingly, we assessed R. typhi-mediated flea IMD pathway activation in vivo using small interfering RNA (siRNA)-mediated knockdown. Knockdown of Relish and Imd increased R. typhi infection levels, implicating the IMD pathway as a critical regulator of R. typhi burden in C. felis. These data suggest that targeting the IMD pathway could minimize the spread of R. typhi, and potentially other human pathogens, vectored by fleas. Copyright 2017 American Society for Microbiology.
    Sponsors
    This work was supported with funds from National Institutes of Health/National Institute of Allergy and Infectious Diseases grants (R01AI017828 and R01AI126853 and R21AI26108, NIH/NIAID grant T32AI095190 (Signaling Pathways in Innate Immunity), NIH/NIAID grants T32AI095190 (Signaling Pathways in Innate Immunity) and T32AI007540 (Infection and Immunity).
    Keyword
    Ctenocephalides felis
    Flea
    IMD
    Innate immunity
    Rickettsia typhi
    Vector biology
    Identifier to cite or link to this item
    https://www.scopus.com/inward/record.uri?eid=2-s2.0-85039561615&doi=10.1128%2fIAI.00562-17&partnerID=40&md5=6da9b41d92f53cf1080f95f2b47e9e89; http://hdl.handle.net/10713/9440
    ae974a485f413a2113503eed53cd6c53
    10.1128/IAI.00562-17
    Scopus Count
    Collections
    UMB Open Access Articles 2018

    entitlement

    Related articles

    • Rickettsial Infections among Ctenocephalides felis and Host Animals during a Flea-Borne Rickettsioses Outbreak in Orange County, California.
    • Authors: Maina AN, Fogarty C, Krueger L, Macaluso KR, Odhiambo A, Nguyen K, Farris CM, Luce-Fedrow A, Bennett S, Jiang J, Sun S, Cummings RF, Richards AL
    • Issue date: 2016
    • Detection of Rickettsia Species in Fleas Collected from Cats in Regions Endemic and Nonendemic for Flea-Borne Rickettsioses in California.
    • Authors: Billeter SA, Diniz PP, Jett LA, Wournell AL, Kjemtrup AM, Padgett KA, Yoshimizu MH, Metzger ME, Barr MC
    • Issue date: 2016 Mar
    • First Detection of Rickettsia typhi and Rickettsia felis in Fleas Collected From Client-Owned Companion Animals in the Southern Great Plains.
    • Authors: Noden BH, Davidson S, Smith JL, Williams F
    • Issue date: 2017 Jul 1
    • Molecular detection of Rickettsia felis and Candidatus Rickettsia asemboensis in fleas from human habitats, Asembo, Kenya.
    • Authors: Jiang J, Maina AN, Knobel DL, Cleaveland S, Laudisoit A, Wamburu K, Ogola E, Parola P, Breiman RF, Njenga MK, Richards AL
    • Issue date: 2013 Aug
    • Analysis of Rickettsia typhi-infected and uninfected cat flea (Ctenocephalides felis) midgut cDNA libraries: deciphering molecular pathways involved in host response to R. typhi infection.
    • Authors: Dreher-Lesnick SM, Ceraul SM, Lesnick SC, Gillespie JJ, Anderson JM, Jochim RC, Valenzuela JG, Azad AF
    • Issue date: 2010 Apr
    DSpace software (copyright © 2002 - 2021)  DuraSpace
    Quick Guide | Policies | Contact Us | UMB Health Sciences & Human Services Library
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.