Systematic identification of latent disease-gene associations from PubMed articles
Date
2018Journal
PLoS ONEPublisher
Public Library of ScienceType
Article
Metadata
Show full item recordAbstract
Recent scientific advances have accumulated a tremendous amount of biomedical knowledge providing novel insights into the relationship between molecular and cellular processes and diseases. Literature mining is one of the commonly used methods to retrieve and extract information from scientific publications for understanding these associations. However, due to large data volume and complicated associations with noises, the interpretability of such association data for semantic knowledge discovery is challenging. In this study, we describe an integrative computational framework aiming to expedite the discovery of latent disease mechanisms by dissecting 146,245 disease-gene associations from over 25 million of PubMed indexed articles. We take advantage of both Latent Dirichlet Allocation (LDA) modeling and network-based analysis for their capabilities of detecting latent associations and reducing noises for large volume data respectively. Our results demonstrate that (1) the LDA-based modeling is able to group similar diseases into disease topics; (2) the disease-specific association networks follow the scale-free network property; (3) certain subnetwork patterns were enriched in the disease-specific association networks; and (4) genes were enriched in topic-specific biological processes. Our approach offers promising opportunities for latent disease-gene knowledge discovery in biomedical research. Copyright 2018 Zhang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Keyword
disease-gene associationlatent Dirichlet allocation (LDA) modeling
Disease--genetics
Genetic Association Studies
PubMed
Identifier to cite or link to this item
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85041044044&doi=10.1371%2fjournal.pone.0191568&partnerID=40&md5=aa6e9171f858f0d1a6a238bf8d3e5550; http://hdl.handle.net/10713/9395ae974a485f413a2113503eed53cd6c53
10.1371/journal.pone.0191568
Scopus Count
Collections
Related articles
- Network-based analysis reveals distinct association patterns in a semantic MEDLINE-based drug-disease-gene network.
- Authors: Zhang Y, Tao C, Jiang G, Nair AA, Su J, Chute CG, Liu H
- Issue date: 2014
- Text mining for identifying topics in the literatures about adolescent substance use and depression.
- Authors: Wang SH, Ding Y, Zhao W, Huang YH, Perkins R, Zou W, Chen JJ
- Issue date: 2016 Mar 19
- Cardiology record multi-label classification using latent Dirichlet allocation.
- Authors: Pérez J, Pérez A, Casillas A, Gojenola K
- Issue date: 2018 Oct
- Finding complex biological relationships in recent PubMed articles using Bio-LDA.
- Authors: Wang H, Ding Y, Tang J, Dong X, He B, Qiu J, Wild DJ
- Issue date: 2011 Mar 23
- Ranking gene-drug relationships in biomedical literature using Latent Dirichlet Allocation.
- Authors: Wu Y, Liu M, Zheng WJ, Zhao Z, Xu H
- Issue date: 2012