Show simple item record

dc.contributor.authorHernandez-Ochoa, E.O.
dc.contributor.authorMelville, Z.
dc.contributor.authorVanegas, C.
dc.date.accessioned2019-05-21T18:56:25Z
dc.date.available2019-05-21T18:56:25Z
dc.date.issued2018
dc.identifier.urihttps://www.scopus.com/inward/record.uri?eid=2-s2.0-85051479531&doi=10.14814%2fphy2.13822&partnerID=40&md5=d091b4aa7d7da1fc81dc318e3eb6ab76
dc.identifier.urihttp://hdl.handle.net/10713/9296
dc.description.abstractCalmodulin (CaM) and S100A1 fine-tune skeletal muscle Ca2+ release via opposite modulation of the ryanodine receptor type 1 (RyR1). Binding to and modulation of RyR1 by CaM and S100A1 occurs predominantly at the region ranging from amino acid residue 3614-3640 of RyR1 (here referred to as CaMBD2). Using synthetic peptides, it has been shown that CaM binds to two additional regions within the RyR1, specifically residues 1975-1999 and 4295-4325 (CaMBD1 and CaMBD3, respectively). Because S100A1 typically binds to similar motifs as CaM, we hypothesized that S100A1 could also bind to CaMBD1 and CaMBD3. Our goals were: (1) to establish whether S100A1 binds to synthetic peptides containing CaMBD1 and CaMBD3 using isothermal calorimetry (ITC), and (2) to identify whether S100A1 and CaM modulate RyR1 Ca2+ release activation via sites other than CaMBD2 in RyR1 in its native cellular context. We developed the mouse model (RyR1D-S100A1KO), which expresses point mutation RyR1-L3625D (RyR1D) that disrupts the modulation of RyR1 by CaM and S100A1 at CaMBD2 and also lacks S100A1 (S100A1KO). ITC assays revealed that S100A1 binds with different affinities to CaMBD1 and CaMBD3. Using high-speed Ca2+ imaging and a model for Ca2+ binding and transport, we show that the RyR1D-S100A1KO muscle fibers exhibit a modest but significant increase in myoplasmic Ca2+ transients and enhanced Ca2+ release flux following field stimulation when compared to fibers from RyR1D mice, which were used as controls to eliminate any effect of binding at CaMBD2, but with preserved S100A1 expression. Our results suggest that S100A1, similar to CaM, binds to CaMBD1 and CaMBD3 within the RyR1, but that CaMBD2 appears to be the primary site of RyR1 regulation by CaM and S100A1. Copyright 2018 The Authors. Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.en_US
dc.description.sponsorshipThis work was supported by research grants from the National Institutes of Health (R37-AR055099 to M.F.S.; R01-GM58888 and R01-CA107331 to D.J.W.) and Deutsche Forschungsgemeinschaft (ME 713/18 to W. M). Z.M. and C.V. were supported by the Interdisciplinary Training Program in Muscle Biology (T32 AR007592).en_US
dc.description.urihttps://dx.doi.org/10.14814/phy2.13822en_US
dc.language.isoen_USen_US
dc.publisherAmerican Physiological Societyen_US
dc.relation.ispartofPhysiological Reports
dc.subjectCa2+ releaseen_US
dc.subjectcalmodulinen_US
dc.subjectexcitation-contraction couplingen_US
dc.subjectisothermal calorimetryen_US
dc.subjectRyR1en_US
dc.subjectS100A1en_US
dc.subjectskeletal muscleen_US
dc.titleLoss of S100A1 expression leads to Ca2+ release potentiation in mutant mice with disrupted CaM and S100A1 binding to CaMBD2 of RyR1en_US
dc.typeArticleen_US
dc.identifier.doi10.14814/phy2.13822
dc.identifier.pmid30101473


This item appears in the following Collection(s)

Show simple item record