• Login
    View Item 
    •   UMB Digital Archive
    • School, Graduate
    • Theses and Dissertations All Schools
    • View Item
    •   UMB Digital Archive
    • School, Graduate
    • Theses and Dissertations All Schools
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UMB Digital ArchiveCommunitiesPublication DateAuthorsTitlesSubjectsThis CollectionPublication DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    Display statistics

    Development of a Novel Color Based Method for Assessing Deposition Patterns of Nasal Sprays and Nebulized Aerosols

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Find Full text
    Author
    Kundoor, Vipra
    Advisor
    Dalby, Richard N.
    Date
    2010
    Type
    dissertation
    
    Metadata
    Show full item record
    Abstract
    Aqueous nasal sprays are widely used to treat patients with local diseases such as allergic rhinitis. Several nasally administered corticosteroid products are nearing patent expiration and are candidates for generic copies, which is driving interest in how bioequivalence will be established - possibly using clinical and scintigraphic methods, but these methods each have specific limitations, as does the existing practice of measuring spray pattern and plume geometry which have proven difficult to correlate with nasal deposition. To overcome these limitations this thesis focused on designing a simple and inexpensive method that allows simulation of nasal anatomy and airflow, and is able to visualize and quantify deposition patterns of nasal sprays. Initially, we used the method to compare deposition patterns of different nasal sprays and different nasal drug delivery devices. Results showed that lower viscosity formulations provided greater coverage than the higher viscosity formulation and the nebulizer covered a greater surface area than the spray pump we evaluated. We also systematically investigated the effect of various formulation and patient related factors, and inspiratory flow rate on nasal deposition pattern and the results obtained showed that inspiratory flow rate did not have a significant effect whereas formulation and patient related factors had a significant effect on deposition pattern. Since bioequivalence of nasal sprays is carried out using in vitro studies, we compared the method to laser based systems which are used to measure spray pattern and plume geometry and we found that both the methods yielded similar results. We also evaluated the use of the method on cascade impactor stages (to detect droplet deposition) and on model faces fitted with facemasks (to quantify unintended facial and ocular droplet deposition associated with nebulizer use). It revealed that impactor temperature does have an effect on the size of nebulized droplets and facemask design had a significant effect on unintended facial and ocular deposition of nebulized droplets. This thesis demonstrates that this approach can be used as an alternative tool to justifiably establish in vitro bioequivalence of nasally administered, locally acting drug solutions and also provide a scientific rationale for justifying patient instructions for use.
    Description
    University of Maryland in Baltimore. Pharmaceutical Sciences. Ph.D. 2010
    Keyword
    bioequivalence
    deposition
    nose model
    Nasal Sprays
    Therapeutic Equivalency
    Identifier to cite or link to this item
    http://hdl.handle.net/10713/929
    Collections
    Theses and Dissertations All Schools
    Theses and Dissertations School of Pharmacy

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Policies | Contact Us | UMB Health Sciences & Human Services Library
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.