• Login
    View Item 
    •   UMB Digital Archive
    • School, Graduate
    • Theses and Dissertations All Schools
    • View Item
    •   UMB Digital Archive
    • School, Graduate
    • Theses and Dissertations All Schools
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UMB Digital ArchiveCommunitiesPublication DateAuthorsTitlesSubjectsThis CollectionPublication DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    Display statistics

    Biochemical Characterization of the Essential Activities of Saccharomyces cerevisiae Mtr4p

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Find Full text
    Author
    Bernstein, Jade
    Advisor
    Toth, Eric A.
    Hassel, Bret A.
    Date
    2010
    Type
    dissertation
    
    Metadata
    Show full item record
    Abstract
    Accurate processing of precursor RNA and timely degradation of aberrant RNAs is crucial for proper cell function. A variety of RNAs are initially synthesized as long precursors, which must then be trimmed to form functional RNAs. Any byproducts of this trimming as well as any defective RNAs must be rapidly degraded. These processing events are mediated in part by RNA degradation machinery consisting of an exonuclease complex called the exosome and the helicase Mtr4p. Mtr4p is a critical partner of the exosome that presumably maintains the momentum of exonucleolytic decay/processing by removing structural impediments from the target RNAs. Our studies have examined the RNA binding parameters of Mtr4p showing that Mtr4p binds single stranded RNA in a length and nucleotide-dependent manner. These studies also showed that Mtr4p has a unique interaction with poly(A) RNA substrates. The interaction between Mtr4p and poly(A) RNA may facilitate targeting of polyadenylated RNAs to the exosome. We have investigated the mechanism underlying the preference of Mtr4p for poly(A) substrates as a means to understand how Mtr4p might facilitate targeting. Our analysis has revealed that Mtr4p interacts with poly(A) via a mechanism that is distinct from the mechanism used when it interacts with other substrates. In addition, we show that homopolymeric stretches like poly(A) suppress the ATPase activity of Mtr4p. Suppression of activity correlates with a decrease in the rate of complex dissociation. These findings indicate that the Mtr4p-poly(A) complex is unique and ideally suited for targeting to the exosome. Taken together, these studies offer characterization of some of the essential activities of Saccharomyces cerevisiae Mtr4p and provide insight into how it might function within the context of the nuclear exosome.
    Description
    University of Maryland in Baltimore. Biochemistry. Ph.D. 2010
    Keyword
    Mtr4p
    nucleus
    TRAMP
    Exosomes
    RNA Helicases
    Saccharomyces cerevisiae
    Identifier to cite or link to this item
    http://hdl.handle.net/10713/926
    Collections
    Theses and Dissertations All Schools
    Theses and Dissertations School of Medicine

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Policies | Contact Us | UMB Health Sciences & Human Services Library
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.