• Login
    View Item 
    •   UMB Digital Archive
    • School, Graduate
    • Theses and Dissertations All Schools
    • View Item
    •   UMB Digital Archive
    • School, Graduate
    • Theses and Dissertations All Schools
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UMB Digital ArchiveCommunitiesPublication DateAuthorsTitlesSubjectsThis CollectionPublication DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    Display statistics

    Effects of Idebenone on the Mitochondrial Respiration of Neurons, Astrocytes, and Microglia

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    JaberTaha_umaryland_0373D_11015.pdf
    Size:
    4.524Mb
    Format:
    PDF
    Download
    Author
    Jaber Taha, Sausan Mousa
    Advisor
    Polster, Brian M.
    Fiskum, Gary
    Date
    2018
    Embargo until
    07/01/2019
    Type
    dissertation
    
    Metadata
    Show full item record
    Abstract
    Neuroinflammation and mitochondrial bioenergetic dysfunction are present in most neurodegenerative diseases. Microglia, the resident immune cells of the brain, release cytotoxic factors such as nitric oxide (NO), superoxide, and cytokines following proinflammatory activation. NO mediates mitochondrial respiratory inhibition in microglia and neighboring cells by competing with oxygen at complex IV of the electron transport chain. Additional modes of inhibition by NO include post-translational modifications to upstream complexes I and II. Idebenone is a clinically safe prodrug that, in its reduced form idebenol, can act in place of ubiquinol and donate electrons directly to complex III. This dissertation tested the overarching hypothesis that idebenone can support mitochondrial respiration in cells with sufficient quinone-reduction capacity to convert idebenone to idebenol, despite complex I and II impairment by NO. In astrocytes but not neurons, idebenone and two related quinones could rescue maximal oxygen consumption rate (OCR) when a complex I inhibitor was present. This difference between astrocytes and neurons was due to a disparity in cellular quinone-reduction capacity mediated by the expression of NADPH:quinone oxidoreductase 1 (NQO1). Astrocytes were sensitive to respiratory impairment by an NO donor or co-cultured proinflammatory microglia at a physiologically-relevant oxygen level and idebenone was able to partially reverse this impairment. Interestingly, microglia upregulated their quinone-reduction capacity following proinflammatory stimulation and idebenone was also able to partially reverse respiratory impairment in microglia following activation. Surprisingly, in contrast to astrocytes, NQO1 was not responsible for idebenone reduction in activated microglia. Biochemical isolation of the responsible enzyme identified inducible nitric oxide synthase (iNOS) among the few candidates common to three distinct fractionation approaches. Assays performed with recombinant iNOS revealed a novel idebenone reduction activity with exciting implications for future studies. This dissertation’s findings suggest that insufficient quinone-reduction capacity in diseased target cells may be a mechanistic reason for the failure of idebenone in clinical trials. These results support new strategic approaches for the use of idebenone and similar drugs to overcome mitochondrial bioenergetic dysfunction.
    Description
    2018
    Biochemistry
    University of Maryland, Baltimore
    Ph.D.
    Keyword
    idebenone
    inducible nitric oxide synthase (iNOS)
    mitochondrial bioenergetics
    NAD(P)H:quinone oxidoreductatse-1 (NQO1)
    neuroinflammation
    Biochemistry
    Neurosciences
    Nitric Oxide Synthase Type II
    Neuroprotection
    Identifier to cite or link to this item
    http://hdl.handle.net/10713/8966
    Collections
    Theses and Dissertations School of Medicine
    Theses and Dissertations All Schools

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Policies | Contact Us | UMB Health Sciences & Human Services Library
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.