• Login
    View Item 
    •   UMB Digital Archive
    • School, Graduate
    • Theses and Dissertations All Schools
    • View Item
    •   UMB Digital Archive
    • School, Graduate
    • Theses and Dissertations All Schools
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UMB Digital ArchiveCommunitiesPublication DateAuthorsTitlesSubjectsThis CollectionPublication DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    Display statistics

    Broad spectrum neuroprotection by the HSV-2 gene ICP10PK includes multiple targets and crosstalk between neurons and glial cells

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Find Full text
    Author
    Laing, Jennifer
    Advisor
    Aurelian, Laure
    Date
    2009
    Type
    dissertation
    
    Metadata
    Show full item record
    Abstract
    Neurodegenerative diseases are characteristically multi-target and multi-cell conditions that are resistant to presently available therapeutics options. It is widely believed that gene therapy strategies could be a promising alternative to current therapies, but a clinical challenge is the identification of the target gene(s) and the cell to cell interactions that regulate pathogenesis. ICP10PK is an anti-apoptotic herpes simplex virus type 2 (HSV-2) gene. Here we describe the ability of ICP10PK to provide neuroprotection against a wide range of toxic stimuli including caspase and calpain-dependent programmed cell death (PCD), oxidative stress and death caused by genetic alterations, such as SOD1. The mechanism of neuroprotection, including modulation of cell-cell interactions is emphasized. Our data indicate that ICP10PK, delivered with the growth compromised HSV-2 vector deltaRR or by transfection, inhibits PCD induced through the activation of the Ras-dependent MEK/ERK and PI3K/Akt survival pathways. Neuroprotection was seen both in vitro and in vivo, including models of acute excitotoxicity (kainic acid and NMDA), an in vitro model of Parkinson's disease (MPP+), and in vitro and in vivo models of Amyotrophic lateral sclerosis (G93A and G85R SOD1). ICP10PK-mediated neuroprotection was associated with MEK/ERK and PI3K/Akt-dependent release of soluble factors that protected uninfected (ICP10PK-) neurons. They include VEGF, which has paracrine protective activity on adjacent (ICP10PK-) neurons and the chemokine fractalkine (FKN) which functions as a bi-directional mediator of crosstalk between neurons and microglia. FKN released by the ICP10PK+ neurons stimulated microglia to release increased levels of the neuroprotective cytokine (IL-10) while inhibiting the release of the inflammatory cytokine TNF-alpha. Factors released by the ICP10PK+ neurons also modulated astrocytes to release nerve growth factor. ICP10PK has the distinct advantage over other neuroprotective strategies that, in addition to protecting the infected neurons, it modulates them to release neuroprotective soluble factors in a balanced proportion such as to create a self-propagating cycle of neuronal inputs and release of chemical mediators that inhibit the progression of acute and chronic neurodegeneration through protection of uninfected neurons.
    Description
    University of Maryland, Baltimore. Pharmacology and Experimental Therapeutics. Ph.D. 2009
    Keyword
    crosstalk
    excitotoxicity
    glial cells
    herpes simplex virus
    neurodegeneration
    Genetic Therapy
    Neuroglia
    Simplexvirus
    Identifier to cite or link to this item
    http://hdl.handle.net/10713/892
    Collections
    Theses and Dissertations All Schools
    Theses and Dissertations School of Medicine

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Policies | Contact Us | UMB Health Sciences & Human Services Library
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.