• Login
    View Item 
    •   UMB Digital Archive
    • School, Graduate
    • Theses and Dissertations All Schools
    • View Item
    •   UMB Digital Archive
    • School, Graduate
    • Theses and Dissertations All Schools
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UMB Digital ArchiveCommunitiesPublication DateAuthorsTitlesSubjectsThis CollectionPublication DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    Display statistics

    Superior colliculus participation in rat vibrissa sensorimotor loops

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Author
    Hemelt, Marie E.
    Advisor
    Keller, Asaf
    Date
    2009
    Type
    dissertation
    
    Metadata
    Show full item record
    Abstract
    The neural computations taking sensory input from the periphery and converting it into relevant, meaningful information about the environment perform a complex task. The nervous system must also use this extracted information to create appropriate motor responses to interact with the environment. This dissertation investigates both sensory and motor processing that occur in the rat vibrissa (whisker) model. In particular, I focus on the superior colliculus, which I show both processes sensory information and contributes to vibrissa movement. Electrophysiological recordings in the superior colliculus reveal neurons that respond to vibrissa deflection with large magnitudes and short latencies, consistent with being driven by inputs from the interpolaris nucleus of the trigeminal complex (SpVi). These characteristics, compared to other regions in the vibrissa pathway, seem well suited for the likely role of the colliculus in orienting and attentive behaviors. These neurons have very large receptive fields and high angular selectivity, leading to the question of whether this selectivity is conserved across the receptive field. While neurons in the colliculus have low angular consistency across the receptive field, it is higher than that found in the ventral posteromedial nucleus of the thalamus or the barrel cortex, and similar to that found in the second somatosensory cortex. This is likely a result of inputs to both the colliculus and the second somatosensory cortex from SpVi. Electrical stimulation in the colliculus produces large, multi-vibrissa movements, which persist after motor cortex lesion, and occur with very different kinematics from those produced in the motor cortex. Recordings from tecto-facial neurons reveal that these neurons do not respond to any sensory input, including vibrissa deflection, at least in the anesthetized preparation. Recordings of local field potentials reveal that areas of the colliculus that project to facial neurons do not appear to overlap with areas receiving direct somatosensory inputs from the vibrissae. While I show vibrissa-responsive neurons projecting to premotor neurons in the facial nucleus are not exhibiting suprathreshold responses in the anesthetized rat, intrinsic connections are known to exist in these regions of the colliculus, and these are likely to facilitate sensory influence on vibrissa motor outputs.
    Description
    University of Maryland in Baltimore. Neuroscience. Ph.D. 2009
    Keyword
    angular preference
    barrel
    sensorimotor
    superior colliculus
    whisker
    Rats
    Superior Colliculi
    Vibrissae
    Identifier to cite or link to this item
    http://hdl.handle.net/10713/862
    Collections
    Theses and Dissertations School of Medicine
    Theses and Dissertations All Schools

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Policies | Contact Us | UMB Health Sciences & Human Services Library
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.