• Login
    View Item 
    •   UMB Digital Archive
    • UMB Open Access Articles
    • UMB Open Access Articles 2019
    • View Item
    •   UMB Digital Archive
    • UMB Open Access Articles
    • UMB Open Access Articles 2019
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UMB Digital ArchiveCommunitiesPublication DateAuthorsTitlesSubjectsThis CollectionPublication DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    Display statistics

    Toward dental caries: Exploring nanoparticle-based platforms and calcium phosphate compounds for dental restorative materials

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Publisher version
    View Source
    Access full-text PDFOpen Access
    View Source
    Check access options
    Check access options
    Author
    Balhaddad, A.A.
    Kansara, A.A.
    Hidan, D.
    Date
    2019
    Journal
    Bioactive Materials
    Publisher
    KeAi Communications Co.
    Type
    Review
    
    Metadata
    Show full item record
    See at
    https://dx.doi.org/10.1016/j.bioactmat.2018.12.002
    Abstract
    Millions of people worldwide suffer from a toothache due to tooth cavity, and often permanent tooth loss. Dental caries, also known as tooth decay, is a biofilm-dependent infectious disease that damages teeth by minerals loss and presents a high incidence of clinical restorative polymeric fillings (tooth colored fillings). Until now, restorative polymeric fillings present no bioactivity. The complexity of oral biofilms contributes to the difficulty in developing effective novel dental materials. Nanotechnology has been explored in the development of bioactive dental materials to reduce or modulate the activities of caries-related bacteria. Nano-structured platforms based on calcium phosphate and metallic particles have advanced to impart an anti-caries potential to restorative materials. The bioactivity of these platforms induces prevention of mineral loss of the hard tooth structure and antibacterial activities against carries-related pathogens. It has been suggested that this bioactivity could minimize the incidence of caries around restorations (CARS) and increase the longevity of such filling materials. The last few years witnessed growing numbers of studies on the preparation evaluations of these novel materials. Herein, the caries disease process and the role of pathogenic caries-related biofilm, the increasing incidence of CARS, and the recent efforts employed for incorporation of bioactive nanoparticles in restorative polymer materials as useful strategies for prevention and management of caries-related-bacteria are discussed. We highlight the status of the most advanced and widely explored interaction of nanoparticle-based platforms and calcium phosphate compounds with an eye toward translating the potential of these approaches to the dental clinical reality. © 2018
    Keyword
    bioactive
    Dental Caries
    Dental Materials
    Nanoparticles
    Identifier to cite or link to this item
    https://www.scopus.com/inward/record.uri?eid=2-s2.0-85058537052&doi=10.1016%2fj.bioactmat.2018.12.002&partnerID=40&md5=f1252c47d22711c9507d2c3c7656d045; http://hdl.handle.net/10713/8596
    ae974a485f413a2113503eed53cd6c53
    10.1016/j.bioactmat.2018.12.002
    Scopus Count
    Collections
    UMB Open Access Articles 2019

    entitlement

     
    DSpace software (copyright © 2002 - 2021)  DuraSpace
    Quick Guide | Policies | Contact Us | UMB Health Sciences & Human Services Library
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.