Analysis of Pseudomonas aeruginosa biofilm membrane vesicles supports multiple mechanisms of biogenesis
Date
2019Journal
PLoS ONEPublisher
Public Library of ScienceType
Article
Metadata
Show full item recordAbstract
Outer Membrane Vesicles (OMVs) are ubiquitous in bacterial environments and enable interactions within and between species. OMVs are observed in lab-grown and environmental biofilms, but our understanding of their function comes primarily from planktonic studies. Planktonic OMVs assist in toxin delivery, cell-cell communication, horizontal gene transfer, small RNA trafficking, and immune system evasion. Previous studies reported differences in size and proteomic cargo between planktonic and agar plate biofilm OMVs, suggesting possible differences in function between OMV types. In Pseudomonas aeruginosa interstitial biofilms, extracellular vesicles were reported to arise through cell lysis, in contrast to planktonic OMV biogenesis that involves the Pseudomonas Quinolone Signal (PQS) without appreciable autolysis. Differences in biogenesis mechanism could provide a rationale for observed differences in OMV characteristics between systems. Using nanoparticle tracking, we found that P. aeruginosa PAO1 planktonic and biofilm OMVs had similar characteristics. However, P. aeruginosa PA14 OMVs were smaller, with planktonic OMVs also being smaller than their biofilm counterparts. Large differences in Staphylococcus killing ability were measured between OMVs from different strains, and a smaller within-strain difference was recorded between PA14 planktonic and biofilm OMVs. Across all conditions, the predatory ability of OMVs negatively correlated with their size. To address biogenesis mechanism, we analyzed vesicles from wild type and pqsA mutant biofilms. This showed that PQS is required for physiological-scale production of biofilm OMVs, and time-course analysis confirmed that PQS production precedes OMV production as it does in planktonic cultures. However, a small sub-population of vesicles was detected in pqsA mutant biofilms whose size distribution more resembled sonicated cell debris than wild type OMVs. These results support the idea that, while a small and unique population of vesicles in P. aeruginosa biofilms may result from cell lysis, the PQS-induced mechanism is required to generate the majority of OMVs produced by wild type communities. © 2019 Cooke et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Sponsors
This work was supported in part by the National Science Foundation (www.nsf.gov), DBI 1429448 to J.W.S. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.Identifier to cite or link to this item
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85061524122&doi=10.1371%2fjournal.pone.0212275&partnerID=40&md5=20c0581a9fa740e3d627ec6d562f3963; http://hdl.handle.net/10713/8562ae974a485f413a2113503eed53cd6c53
10.1371/journal.pone.0212275
Scopus Count
Collections
Related articles
- Pseudomonas Quinolone Signal-Induced Outer Membrane Vesicles Enhance Biofilm Dispersion in Pseudomonas aeruginosa.
- Authors: Cooke AC, Florez C, Dunshee EB, Lieber AD, Terry ML, Light CJ, Schertzer JW
- Issue date: 2020 Nov 25
- Membrane Distribution of the Pseudomonas Quinolone Signal Modulates Outer Membrane Vesicle Production in Pseudomonas aeruginosa.
- Authors: Florez C, Raab JE, Cooke AC, Schertzer JW
- Issue date: 2017 Aug 8
- Tracking the Dynamic Relationship between Cellular Systems and Extracellular Subproteomes in Pseudomonas aeruginosa Biofilms.
- Authors: Park AJ, Murphy K, Surette MD, Bandoro C, Krieger JR, Taylor P, Khursigara CM
- Issue date: 2015 Nov 6
- Regulation of the formation and structure of biofilms by quorum sensing signal molecules packaged in outer membrane vesicles.
- Authors: Zhao Z, Wang L, Miao J, Zhang Z, Ruan J, Xu L, Guo H, Zhang M, Qiao W
- Issue date: 2022 Feb 1
- Molecular conformation affects the interaction of the Pseudomonas quinolone signal with the bacterial outer membrane.
- Authors: Li A, Schertzer JW, Yong X
- Issue date: 2019 Jan 25