• Login
    View Item 
    •   UMB Digital Archive
    • School, Graduate
    • Theses and Dissertations All Schools
    • View Item
    •   UMB Digital Archive
    • School, Graduate
    • Theses and Dissertations All Schools
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UMB Digital ArchiveCommunitiesPublication DateAuthorsTitlesSubjectsThis CollectionPublication DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    Display statistics

    S100A1 modulation of skeletal muscle excitation-contraction coupling

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Find Full text
    Author
    Prosser, Benjamin
    Advisor
    Schneider, Martin F.
    Date
    2009
    Type
    dissertation
    
    Metadata
    Show full item record
    Abstract
    S100A1, a 21 kDa dimeric Ca2+ binding protein, enhances cardiac Ca2+ release and contractility, and is a potential therapeutic agent for the treatment of cardiomyopathy. A role of S100A1 in skeletal muscle is less well defined. Additionally, the molecular mechanism underlying S100A1 modulation of sarcoplasmic reticulum Ca2+ release has not been fully elucidated. Here, utilizing a genetic approach to knock out (KO) S100A1, I demonstrate a physiologic role of S100A1 in skeletal muscle excitation-contraction (EC) coupling. Using high-speed confocal microscopy, I show that ablation of S100A1 leads to delayed myoplasmic Ca2+ transients with decreased amplitude following an action potential in isolated flexor digitorum brevis (FDB) muscle fibers. Through binding assays and competition experiments, I identify a novel S100A1 binding site on the cytoplasmic face of the ryanodine receptor (RyR1) that corresponds to a previously identified calmodulin (CaM) binding domain (CaMBD). I find that S100A1 competes with CaM for this site, which also interacts with the voltage sensor of EC coupling, the dihydropyridine receptor. To investigate effects of S100A1 on the voltage sensor, I utilized whole-cell patch clamp electrophysiology to record intra-membrane charge movement currents in WT and KO fibers. In contrast to recent reports, I find that FDB fibers exhibit two distinct components of charge movement, an initial rapid component (Qgamma) and a delayed, steeply voltage dependent "hump" component (Qbeta;) previously recorded primarily in amphibian but not mammalian fibers. Surprisingly, I find that Qgamma is selectively suppressed in S100A1 KO fibers. Finally, I explore the effects of S100A1 on whole muscle contractile force, to test if S100A1's modulation of single fiber Ca2+ release translates to altered contractile performance in vivo. I find that tibialis anterior muscles of S100A1-/- mice generate less contractile force and exhibit a greater rate of fatigue than WT counterparts. Taken together, these data suggest S100A1 binds to the CaMBD of RyR1 and enhances voltage-gated Ca2+ release, leading to elevated myoplasmic Ca2+ and increased contractile force following muscle fiber excitation. This thesis sheds light on voltage sensor activation of Ca2+ release in skeletal muscle, and supports S100A1 as a positive regulator of EC coupling.
    Description
    University of Maryland in Baltimore. Molecular Medicine. Ph.D. 2009
    Keyword
    calcium release channel
    DHPR
    RyR
    S100
    S100A1
    Excitation Contraction Coupling
    Identifier to cite or link to this item
    http://hdl.handle.net/10713/853
    Collections
    Theses and Dissertations All Schools
    Theses and Dissertations School of Medicine

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Policies | Contact Us | UMB Health Sciences & Human Services Library
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.