• Clinical endpoints for efficacy studies

      Porter, Chad K.; Gutierrez, Ramiro L.; Kotloff, Karen L. (Elsevier Ltd., 2019-01-01)
      Well-established, validated and clinically meaningful primary and secondary endpoints are critical inadvancing vaccines through proof of principal studies, licensure and pre-qualification. To that end, the field of vaccine development for Shigella, enterotoxigenic Escherichia coli (ETEC) as well as other enteric pathogens would benefit greatly from a focused review of clinical endpoints and the use of common end-points across the field to enable study-to-study comparisons as well as comparative assessments between vaccine candidates. A workshop was conducted to review clinical endpoints from controlled human challenge studies, field studies in naïve adult travelers and pediatric studies in low-middle income countries and to develop a consensus on clinical endpoints for future vaccine trials. Following sequential presentations on different study designs (CHIM, travelers’ efficacy and pediatric efficacy), workshop participants broke into three simultaneous workgroups focused on those study designs to discuss a number of topics key to clinical endpoints specific to each study design. Previously utilized endpoints were reviewed with an eye towards potentially novel endpoints for future studies and consideration of the disease parameters and spectrum of disease targeted for prevention. The strength of support among workshop participants for the use of various endpoints is summarized as are recommendations for additional endpoints to be considered in future studies. It is anticipated that this report will facilitate endpoint determination in future efficacy trials of vaccine candidates.
    • Ebola vaccination in the Democratic Republic of the Congo

      Wells, Chad R.; Pandey, Abhishek; Fitzpatrick, Meagan C. (2019-05-14)
      Following the April 2018 reemergence of Ebola in a rural region of the Democratic Republic of the Congo (DRC), the virus spread to an urban center by early May. Within 2 wk of the first case confirmation, a vaccination campaign was initiated in which 3,017 doses were administered to contacts of cases and frontline healthcare workers. To evaluate the spatial dynamics of Ebola transmission and quantify the impact of vaccination, we developed a geographically explicit model that incorporates high-resolution data on poverty and population density. We found that while Ebola risk was concentrated around sites initially reporting infections, longer-range dissemination also posed a risk to areas with high population density and poverty. We estimate that the vaccination program contracted the geographical area at risk for Ebola by up to 70.4% and reduced the level of risk within that region by up to 70.1%. The early implementation of vaccination was critical. A delay of even 1 wk would have reduced these effects to 33.3 and 44.8%, respectively. These results underscore the importance of the rapid deployment of Ebola vaccines during emerging outbreaks to containing transmission and preventing global spread. The spatiotemporal framework developed here provides a tool for identifying high-risk regions, in which surveillance can be intensified and preemptive control can be implemented during future outbreaks.
    • How can controlled human infection models accelerate clinical development and policy pathways for vaccines against Shigella?

      Giersing, Birgitte K.; Porter, Chad K.; Kotloff, Karen L. (Elsevier Ltd., 2019-08-07)
      Controlled Human Infection Models (CHIMs) now exist for several infectious diseases. CHIMs offer significant insight into disease pathogenesis, as well the potential to rapidly test clinical proof-of-concept of vaccine candidates. The application of CHIMs to identify a correlate of protection that may reduce the sample size of, or obviate the need for clinical efficacy studies to achieve licensure is of considerable interest to vaccine developers and public health stakeholders. This topic was the subject of a workshop at the 2018 Vaccines Against Shigella and ETEC (VASE) conference, in the context of O-antigen-based Shigella vaccines. © 2019 The Authors
    • Structural basis for epitopes in the gp120 cluster a region that invokes potent effector cell activity

      Tolbert, W.D.; Sherburn, R.T.; Van, V. (MDPI AG, 2019)
      While a number of therapeutic options to control the progression of human immunodeficiency virus (HIV-1) now exist, a broadly effective preventive vaccine is still not available. Through detailed structural analysis of antibodies able to induce potent effector cell activity, a number of Env epitopes have been identified which have the potential to be considered vaccine candidates. These antibodies mainly target the gp120 Cluster A region which is only exposed upon viral binding to the target cell with epitopes becoming available for antibody binding during viral entry and fusion and, therefore, after the effective window for neutralizing antibody activity. This review will discuss recent advances in the structural characterization of these important targets with a special focus on epitopes that are involved in Fc-mediated effector function without direct viral neutralizing activities. © 2019 by the authors. Licensee MDPI, Basel, Switzerland.