• Infection of the basal ganglia by a murine coronavirus

      Fishman, P.S.; Gass, J.S.; Swoveland, P.T. (1985)
      The coronavirus, mouse hepatitis virus strain A59 (MHV-A59), causes mild encephalitis and chronic demyelination. Immunohistochemical techniques showed that MHV-A59-infected C57BL/6 mice contained dense deposits of viral antigen in the subthalamic nucleus and substantia nigra, with fewer signs of infection in other regions of the brain. The animals showed extra- and intracellular vacuolation, neuronal loss, and gliosis in the subthalamic-nigral region. Such localization is unprecedented among known viral encephalitides of humans and other species. This infection by a member of a viral class capable of causing both encephalitis and persistent infection in several species may be related to postencephalitic parkinsonism.
    • Community respiratory viruses in individuals with human immunodeficiency virus infection

      King, J.C. (Elsevier Inc., 1997)
      Respiratory viruses, particularly influenza viruses, respiratory syncytial virus (RSV), parainfluenza viruses, and adenoviruses, are ubiquitous pathogens among humans, especially among young children. However, relatively little is known about the impact of these common infections on individuals with the human immunodeficiency virus (HIV). A review of the literature identifies three key areas that need further exploration. First, moderate-to-severe and even fatal lower respiratory viral illnesses in HIV-infected individuals have been reported. In general, the clinical presentation of these respiratory viral infections in persons with HIV infection is similar to their presentation in individuals without HIV infection. The major exception is the occurrence of fulminant, and often fatal, disseminated adenovirus infection in adults and children with HIV disease. Despite these reports, no information is available regarding the frequency of moderate-to-severe respiratory viral illnesses in individuals with HIV infection. Epidemiologic studies of respiratory viral illnesses in cohorts of HIV-infected adults and children are needed. Second, prolonged shedding of respiratory viruses for weeks and even months has been documented in HIV-infected adults and children. The frequency of prolonged shedding in this population has not been well defined, but data from a small newborn cohort study suggest that, at least for RSV, prolonged shedding is common. Prolonged respiratory viral shedding has implications for infection control in medical facilities where HIV-infected individuals are treated and in nursing homes, child care centers, and group foster homes that provide care for HIV-infected individuals. Therapies to help eliminate these chronic viral infections should be explored. Finally, indirect evidence suggests that respiratory viral infection may result in changes in HIV replication and, theoretically, HIV disease progression. Increased HIV-1 replication has been demonstrated in vitro in T lymphoma cells exposed to genetic material from adenovirus. Increased HIV replication in peripheral blood from adults following inactivated influenza vaccination has been reported. The impact of natural respiratory viral infection (and perhaps vaccination against these pathogens) on HIV replication and disease progression will be an important area of study.
    • PATRIC: The VBI PathoSystems Resource Integration Center

      Snyder, E.E.; Gillespie, J.J.; Azad, A.F. (2007)
      The PathoSystems Resource Integration Center (PATRIC) is one of eight Bioinformatics Resource Centers (BRCs) funded by the National Institute of Allergy and Infection Diseases (NIAID) to create a data and analysis resource for selected NIAID priority pathogens, specifically proteobacteria of the genera Brucella, Rickettsia and Coxiella, and corona-, calici- and lyssaviruses and viruses associated with hepatitis A and E. The goal of the project is to provide a comprehensive bioinformatics resource for these pathogens, including consistently annotated genome, proteome and metabolic pathway data to facilitate research into counter-measures, including drugs, vaccines and diagnostics. The project's curation strategy has three prongs: 'breadth first' beginning with whole-genome and proteome curation using standardized protocols, a 'targeted' approach addressing the specific needs of researchers and an integrative strategy to leverage high-throughput experimental data (e.g. microarrays, proteomics) and literature. The PATRIC infrastructure consists of a relational database, analytical pipelines and a website which supports browsing, querying, data visualization and the ability to download raw and curated data in standard formats. At present, the site warehouses complete sequences for 17 bacterial and 332 viral genomes. The PATRIC website (https://patric.vbi.vt.edu) will continually grow with the addition of data, analysis and functionality over the course of the project.
    • Complete genomic sequence analysis of infectious bronchitis virus Ark DPI strain and its evolution by recombination

      Ammayappan, A.; Upadhyay, C.; Vakharia, V.N. (2008)
      An infectious bronchitis virus Arkansas DPI (Ark DPI) virulent strain was sequenced, analyzed and compared with many different IBV strains and coronaviruses. The genome of Ark DPI consists of 27,620 nucleotides, excluding poly (A) tail, and comprises ten open reading frames. Comparative sequence analysis of Ark DPI with other IBV strains shows striking similarity to the Conn, Gray, JMK, and Ark 99, which were circulating during that time period. Furthermore, comparison of the Ark genome with other coronaviruses demonstrates a close relationship to turkey coronavirus. Among non-structural genes, the 5'untranslated region (UTR), 3C-like proteinase (3CLpro) and the polymerase (RdRp) sequences are 100% identical to the Gray strain. Among structural genes, S1 has 97% identity with Ark 99; S2 has 100% identity with JMK and 96% to Conn; 3b 99%, and 3C to N is 100% identical to Conn strain. Possible recombination sites were found at the intergenic region of spike gene, 3'end of S1 and 3a gene. Independent recombination events may have occurred in the entire genome of Ark DPI, involving four different IBV strains, suggesting that genomic RNA recombination may occur in any part of the genome at number of sites. Hence, we speculate that the Ark DPI strain originated from the Conn strain, but diverged and evolved independently by point mutations and recombination between field strains. Copyright 2008 Ammayappan et al
    • Complete nucleotide analysis of the structural genome of the infectious bronchitis virus strain Md27 reveals its mosaic nature

      Ammayappan, A.; Vakharia, V.N. (2009)
      Infectious bronchitis virus (IBV) causes highly contagious respiratory or urogenital tract diseases in chickens. The Maryland 27(Md27) strain was first isolated in 1976 from diseased chicken flocks in the Delmarva Peninsula region. To understand the genetic diversity and phylogenetic relationship of existing strains with Md27, the complete nucleotide sequence of the 3'end coding region (~7.2 kb) of Md27 was determined and compared with other IBV strains and coronaviruses. It has the same S-3-M-5-N-3' gene order, as is the case of other IBV strains. The spike gene of Md27 exhibits 97% identity with the SE17 strain. There are deletions at the spike gene, non-coding region between M and 5 genes, and at the 3'untranslated region (UTR), which is different from Ark-like strains. Phylogenetic analysis and sequence alignments demonstrate that Md27 is a chimera containing different gene segments that are most closely related to the SE17, Conn and JMK strains. This current study provides evidence for genomic mutations and intergenic recombination that have taken place in the evolution of IBV strain Md27. Copyright 2009 by the authors.
    • Identification of sequence changes responsible for the attenuation of avian infectious bronchitis virus strain Arkansas DPI

      Ammayappan, A.; Upadhyay, C.; Vakharia, V.N. (2009)
      Infectious bronchitis virus (IBV) is the causal agent of infectious bronchitis, which still remains one of the most important poultry diseases worldwide because of numerous serotypes and variants. A virulent strain of IBV, isolated from Arkansas (Ark), was propagated in embryonated eggs (Ark DPI 11). Following 101 serial passages in embryonated eggs, an attenuated strain of IBV was established (Ark DPI 101) that does not induce histopathological lesions in the tracheae of infected chicks. To identify sequence changes responsible for the attenuation of IBV, complete genome sequences of both virulent and attenuated Ark DPI viruses were obtained. Comparison of the genome sequences of the virulent and attenuated Ark DPI viruses reveals that these viruses are similar and differ only by 21 nucleotides, resulting in 17 amino acids changes. Most of those substitutions are located in the replicase 1a and spike genes. No differences were observed in gene 3, M or 5a, and only one nucleotide substitution each was present in 5b, N and 3?UTR. By comparing the deduced amino acid sequences of virulent and attenuated viruses, we identified sequence changes responsible for the adaptation and attenuation of the IBV-Ark DPI strain.
    • Unique signatures Of long noncoding RNA expression in response to virus infection And altered innate immune signaling

      Peng, X.; Gralinski, L.; Frieman, M.B. (2010)
      Studies of the host response to virus infection typically focus on protein-coding genes. However, non-protein-coding RNAs (ncRNAs) are transcribed in mammalian cells, and the roles of many of these ncRNAs remain enigmas. Using nextgeneration sequencing, we performed a whole-transcriptome analysis of the host response to severe acute respiratory syndrome coronavirus (SARS-CoV) infection across four founder mouse strains of the Collaborative Cross. We observed differential expression of approximately 500 annotated, long ncRNAs and 1,000 nonannotated genomic regions during infection. Moreover, studies of a subset of these ncRNAs and genomic regions showed the following. (i) Most were similarly regulated in response to influenza virus infection. (ii) They had distinctive kinetic expression profiles in type I interferon receptor and STAT1 knockout mice during SARS-CoV infection, including unique signatures of ncRNA expression associated with lethal infection. (iii) Over 40% were similarly regulated in vitro in response to both influenza virus infection and interferon treatment. These findings represent the first discovery of the widespread differential expression of long ncRNAs in response to virus infection and suggest that ncRNAs are involved in regulating the host response, including innate immunity. At the same time, virus infection models provide a unique platform for studying the biology and regulation of ncRNAs. IMPORTANCE Most studies examining the host transcriptional response to infection focus only on protein-coding genes. However, there is growing evidence that thousands of non-protein-coding RNAs (ncRNAs) are transcribed from mammalian genomes. While most attention to the involvement of ncRNAs in virus-host interactions has been on small ncRNAs such as microRNAs, it is becoming apparent that many long ncRNAs (>200 nucleotides [nt]) are also biologically important. These long ncRNAs have been found to have widespread functionality, including chromatin modification and transcriptional regulation and serving as the precursors of small RNAs. With the advent of next-generation sequencing technologies, whole-transcriptome analysis of the host response, including long ncRNAs, is now possible. Using this approach, we demonstrated that virus infection alters the expression of numerous long ncRNAs, suggesting that these RNAs may be a new class of regulatory molecules that play a role in determining the outcome of infection. Copyright 2010 Peng et al.
    • Transcriptomic analysis reveals a mechanism for a prefibrotic phenotype in STAT1 knockout mice during severe acute respiratory syndrome coronavirus infection

      Zornetzer, G.A.; Frieman, M.B.; Rosenzweig, E. (American Society for Microbiology, 2010)
      Severe acute respiratory syndrome coronavirus (SARS-CoV) infection can cause the development of severe end-stage lung disease characterized by acute respiratory distress syndrome (ARDS) and pulmonary fibrosis. The mechanisms by which pulmonary lesions and fibrosis are generated during SARS-CoV infection are not known. Using high-throughput mRNA profiling, we examined the transcriptional response of wild-type (WT), type I interferon receptor knockout (IFNAR1-/-), and STAT1 knockout (STAT1-/-) mice infected with a recombinant mouse-adapted SARS-CoV (rMA15) to better understand the contribution of specific gene expression changes to disease progression. Despite a deletion of the type I interferon receptor, strong expression of interferon-stimulated genes was observed in the lungs of IFNAR1-/- mice, contributing to clearance of the virus. In contrast, STAT1-/- mice exhibited a defect in the expression of interferon-stimulated genes and were unable to clear the infection, resulting in a lethal outcome. STAT1 -/- mice exhibited dysregulation of T-cell and macrophage differentiation, leading to a TH2-biased immune response and the development of alternatively activated macrophages that mediate a profibrotic environment within the lung. We propose that a combination of impaired viral clearance and T-cell/macrophage dysregulation causes the formation of prefibrotic lesions in the lungs of rMA15-infected STAT1-/- mice.
    • Metagenomic analysis of the viromes of three North American bat species: Viral diversity among different bat species that share a common habitat

      Donaldson, E.F.; Haskew, A.N.; Frieman, M.B. (2010)
      Effective prediction of future viral zoonoses requires an in-depth understanding of the heterologous viral population in key animal species that will likely serve as reservoir hosts or intermediates during the next viral epidemic. The importance of bats as natural hosts for several important viral zoonoses, including Ebola, Marburg, Nipah, Hendra, and rabies viruses and severe acute respiratory syndrome-coronavirus (SARS-CoV), has been established; however, the large viral population diversity (virome) of bats has been partially determined for only a few of the ?1,200 bat species. To assess the virome of North American bats, we collected fecal, oral, urine, and tissue samples from individual bats captured at an abandoned railroad tunnel in Maryland that is cohabitated by 7 to 10 different bat species. Here, we present preliminary characterization of the virome of three common North American bat species, including big brown bats (Eptesicus fuscus), tricolored bats (Perimyotis subflavus), and little brown myotis (Myotis lucifugus). In samples derived from these bats, we identified viral sequences that were similar to at least three novel group 1 CoVs, large numbers of insect and plant virus sequences, and nearly full-length genomic sequences of two novel bacteriophages. These observations suggest that bats encounter and disseminate a large assortment of viruses capable of infecting many different animals, insects, and plants in nature.
    • Effects of magnesium ions on recombinant human furin: Selective activation of hydrolytic activity upon substrates derived from virus envelope glycoprotein

      Izidoro, M.A.; Assis, D.M.; Lindberg, I. (2010)
      Here we report a detailed analysis of magnesium (Mg2+) ion effects on furin hydrolysis of fluorescent resonance energy transfer decapeptide substrates derived from canonical R-X-K/R-R furin cleavage motifs within certain viral envelope glycoproteins and eukaryotic proproteins. Using virus-derived sequences a selective activation of furin by Mg2+ ions was observed as a result of cooperativity between furin subsites. Furin hydrolysis of the peptides Abz-SRRHKR?FAGV-Q-EDDnp (from measles virus fusion protein Fo) and Abz-RERRRKKR?GLFG-Q-EDDnp (from Asian avian influenza A, H5N1) was activated between 60-and 80-fold by MgCl 2. It appears that virus envelope glycoprotein mutations have been selected to increase their susceptibility to furin within cells, a location where Mg2+ is present in adequate concentrations for activation. Both the pH profile of furin and its intrinsic fluorescence were modified by Mg 2+ ions, which bind to furin with a Kd value of 1.1 mm.
    • Association of seropositivity for influenza and coronaviruses with history of mood disorders and suicide attempts

      Okusaga, O.; Lapidus, M.; Arling, T.A.; Cabassa, J.A.; Balis, T.; Postolache, T.T. (2011)
      Background: Anecdotal reports of mood disorder following infection with common respiratory viruses with neurotropic potential have been in existence since the last century. Nevertheless, systematic studies on the association between these viruses and mood disorders are lacking. Methods: Influenza A, B and coronavirus antibody titers were measured in 257 subjects with recurrent unipolar and bipolar disorder and healthy controls, by SCID. Pearson's χ² tests and logistic regression models were used to analyze associations between seropositivity for coronaviruses, influenza A and B viruses and the following: a) history of recurrent mood disorders b) having attempted suicide in the past c) uni- vs. bi-polarity and d) presence of psychotic symptoms during mood episodes. Results: Seropositivity for influenza A (p = 0.004), B (p < 0.0001) and coronaviruses (p < 0.0001) were associated with history of mood disorders but not with the specific diagnosis of unipolar or bipolar depression. Seropositivity for influenza B was significantly associated with a history of suicide attempt (p =0.001) and history of psychotic symptoms (p =0.005). Limitations: The design was cross-sectional. Socioeconomic factors, inflammatory markers, and axis II psychopathology were not assessed. Conclusions: The association of seropositivity for influenza and coronaviruses with a history of mood disorders, and influenza B with suicidal behavior require replication in larger longitudinal samples. The need for these studies is additionally supported by the high incidence of these viral infections, the high prevalence of mood disorders, and resilience of suicide epidemics.
    • Yeast based small molecule screen for inhibitors of SARS-CoV

      Frieman, M.; Matthews, K.; Taylor, J.; Jones, G. (2011)
      Severe acute respiratory coronavirus (SARS-CoV) emerged in 2002, resulting in roughly 8000 cases worldwide and 10% mortality. The animal reservoirs for SARS-CoV precursors still exist and the likelihood of future outbreaks in the human population is high. The SARS-CoV papain-like protease (PLP) is an attractive target for pharmaceutical development because it is essential for virus replication and is conserved among human coronaviruses. A yeast-based assay was established for PLP activity that relies on the ability of PLP to induce a pronounced slow-growth phenotype when expressed in S. cerevisiae. Induction of the slow-growth phenotype was shown to take place over a 60-hour time course, providing the basis for conducting a screen for small molecules that restore growth by inhibiting the function of PLP. Five chemical suppressors of the slow-growth phenotype were identified from the 2000 member NIH Diversity Set library. One of these, NSC158362, potently inhibited SARS-CoV replication in cell culture without toxic effects on cells, and it specifically inhibited SARS-CoV replication but not influenza virus replication. The effect of NSC158362 on PLP protease, deubiquitinase and anti-interferon activities was investigated but the compound did not alter these activities. Another suppressor, NSC158011, demonstrated the ability to inhibit PLP protease activity in a cell-based assay. The identification of these inhibitors demonstrated a strong functional connection between the PLP-based yeast assay, the inhibitory compounds, and SARS-CoV biology. Furthermore the data with NSC158362 suggest a novel mechanism for inhibition of SARS-CoV replication that may involve an unknown activity of PLP, or alternatively a direct effect on a cellular target that modifies or bypasses PLP function in yeast and mammalian cells. Copyright 2011 Frieman et al.
    • Integrative deep sequencing of the mouse lung transcriptome reveals differential expression of diverse classes of small RNAs in response to respiratory virus infection

      Peng, X.; Gralinski, L.; Frieman, M.B. (2011)
      We previously reported widespread differential expression of long non-protein-coding RNAs (ncRNAs) in response to virus infection. Here, we expanded the study through small RNA transcriptome sequencing analysis of the host response to both severe acute respiratory syndrome coronavirus (SARS-CoV) and influenza virus infections across four founder mouse strains of the Collaborative Cross, a recombinant inbred mouse resource for mapping complex traits. We observed differential expression of over 200 small RNAs of diverse classes during infection. A majority of identified microRNAs (miRNAs) showed divergent changes in expression across mouse strains with respect to SARS-CoV and influenza virus infections and responded differently to a highly pathogenic reconstructed 1918 virus compared to a minimally pathogenic seasonal influenza virus isolate. Novel insights into miRNA expression changes, including the association with pathogenic outcomes and large differences between in vivo and in vitro experimental systems, were further elucidated by a survey of selected miRNAs across diverse virus infections. The small RNAs identified also included many non-miRNA small RNAs, such as small nucleolar RNAs (snoRNAs), in addition to nonannotated small RNAs. An integrative sequencing analysis of both small RNAs and long transcripts from the same samples showed that the results revealing differential expression of miRNAs during infection were largely due to transcriptional regulation and that the predicted miRNA-mRNA network could modulate global host responses to virus infection in a combinatorial fashion. These findings represent the first integrated sequencing analysis of the response of host small RNAs to virus infection and show that small RNAs are an integrated component of complex networks involved in regulating the host response to infection. Copyright 2011 Peng et al.
    • Induction of alternatively activated macrophages enhances pathogenesis during severe acute respiratory syndrome coronavirus infection

      Page, C.; Goicochea, L.; Matthews, K.; Frieman, M. (2012)
      Infection with severe acute respiratory syndrome coronavirus (SARS-CoV) causes acute lung injury (ALI) that often leads to severe lung disease. A mouse model of acute SARS-CoV infection has been helpful in understanding the host response to infection; however, there are still unanswered questions concerning SARS-CoV pathogenesis. We have shown that STAT1 plays an important role in the severity of SARS-CoV pathogenesis and that it is independent of the role of STAT1 in interferon signaling. Mice lacking STAT1 have greater weight loss, severe lung pathology with pre-pulmonary-fibrosis-like lesions, and an altered immune response following infection with SARS-CoV. We hypothesized that STAT1 plays a role in the polarization of the immune response, specifically in macrophages, resulting in a worsened outcome. To test this, we created bone marrow chimeras and celltype- specific knockouts of STAT1 to identify which cell type(s) is critical to protection from severe lung disease after SARS-CoV infection. Bone marrow chimera experiments demonstrated that hematopoietic cells are responsible for the pathogenesis in STAT1-/- mice, and because of an induction of alternatively activated (AA) macrophages after infection, we hypothesized that the AA macrophages were critical for disease severity. Mice with STAT1 in either monocytes and macrophages (LysM/STAT1) or ciliated lung epithelial cells (FoxJ1/STAT1) deleted were created. Following infection, LysM/STAT1 mice display severe lung pathology, while FoxJ1/STAT1 mice display normal lung pathology. We hypothesized that AA macrophages were responsible for this STAT1-dependent pathology and therefore created STAT1/STAT6-/- double-knockout mice. STAT6 is essential for the development of AA macrophages. Infection of the double-knockout mice displayed a lack of lung disease and prefibrotic lesions, suggesting that AA macrophage production may be the cause of STAT1-dependent lung disease. We propose that the control of AA macrophages by STAT1 is critical to regulating immune pathologies and for protection from long-term progression to fibrotic lung disease in a mouse model of SARS-CoV infection.
    • Molecular determinants of severe acute respiratory syndrome coronavirus pathogenesis and virulence in young and aged mouse models of human disease

      Frieman, M.; Yount, B.; Page, C. (2012)
      SARS coronavirus (SARS-CoV) causes severe acute respiratory tract disease characterized by diffuse alveolar damage and hyaline membrane formation. This pathology often progresses to acute respiratory distress (such as acute respiratory distress syndrome [ARDS]) and atypical pneumonia in humans, with characteristic age-related mortality rates approaching 50% or more in immunosenescent populations. The molecular basis for the extreme virulence of SARS-CoV remains elusive. Since young and aged (1-year-old) mice do not develop severe clinical disease following infection with wild-type SARS-CoV, a mouse-adapted strain of SARS-CoV (called MA15) was developed and was shown to cause lethal infection in these animals. To understand the genetic contributions to the increased pathogenesis of MA15 in rodents, we used reverse genetics and evaluated the virulence of panels of derivative viruses encoding various combinations of mouse-adapted mutations. We found that mutations in the viral spike (S) glycoprotein and, to a much less rigorous extent, in the nsp9 nonstructural protein, were primarily associated with the acquisition of virulence in young animals. The mutations in S likely increase recognition of the mouse angiotensin-converting enzyme 2 (ACE2) receptor not only in MA15 but also in two additional, independently isolated mouse-adapted SARS-CoVs. In contrast to the findings for young animals, mutations to revert to the wild-type sequence in nsp9 and the S glycoprotein were not sufficient to significantly attenuate the virus compared to other combinations of mouse-adapted mutations in 12-month-old mice. This panel of SARS-CoVs provides novel reagents that we have used to further our understanding of differential, age-related pathogenic mechanisms in mouse models of human disease.
    • Evidence supporting a Zoonotic Origin of human coronavirus strain NL63

      Huynh, J.; Li, S.; Frieman, M.B. (2012)
      The relationship between bats and coronaviruses (CoVs) has received considerable attention since the severe acute respiratory syndrome (SARS)-like CoV was identified in the Chinese horseshoe bat (Rhinolophidae) in 2005. Since then, several bats throughout the world have been shown to shed CoV sequences, and presumably CoVs, in the feces; however, no bat CoVs have been isolated from nature. Moreover, there are very few bat cell lines or reagents available for investigating CoV replication in bat cells or for isolating bat CoVs adapted to specific bat species. Here, we show by molecular clock analysis that alphacoronavirus (α-CoV) sequences derived from the North American tricolored bat (Perimyotis subflavus) are predicted to share common ancestry with human CoV (HCoV)-NL63, with the most recent common ancestor between these viruses occurring approximately 563 to 822 years ago. Further, we developed immortalized bat cell lines from the lungs of this bat species to determine if these cells were capable of supporting infection with HCoVs. While SARS-CoV, mouse-adapted SARS-CoV (MA15), and chimeric SARS-CoVs bearing the spike genes of early human strains replicated inefficiently, HCoV-NL63 replicated for multiple passages in the immortalized lung cells from this bat species. These observations support the hypothesis that human CoVs are capable of establishing zoonotic-reverse zoonotic transmission cycles that may allow some CoVs to readily circulate and exchange genetic material between strains found in bats and other mammals, including humans.
    • Emergence of the Middle East Respiratory Syndrome Coronavirus

      Coleman, C.M.; Frieman, M.B. (Public Library of Science, 2013)
    • The SARS coronavirus papain like protease can inhibit IRF3 at a post activation step that requires deubiquitination activity

      Matthews, K.; Pham, A.; Frieman, M. (BioMed Central Ltd., 2014)
      Background: The outcome of a viral infection is regulated by complex interactions of viral and host factors. SARS coronavirus (SARS-CoV) engages and regulates several innate immune response pathways during infection. We have previously shown that the SARS-CoV Papain-like Protease (PLpro) inhibits type I interferon (IFN) by inhibiting IRF3 phosphorylation thereby blocking downstream Interferon induction. This finding prompted us to identify other potential mechanisms of inhibition of PLpro on IFN induction. Methods: We have used plasmids expressing PLpro and IRF3 including an IRF3 mutant that is constitutively active, called IRF3(5D). In these experiments we utilize transfections, chromatin immunoprecipitation, Electro-mobility Shift Assays (EMSA) and protein localization to identify where IRF3 and IRF3(5D) are inhibited by PLpro. Results: Here we show that PLpro also inhibits IRF3 activation at a step after phosphorylation and that this inhibition is dependent on the de-ubiquitination (DUB) activity of PLpro. We found that PLpro is able to block the type I IFN induction of a constitutively active IRF3, but does not inhibit IRF3 dimerization, nuclear localization or DNA binding. However, inhibition of PLpro's DUB activity by mutagenesis blocked the IRF3 inhibition activity of PLpro, suggesting a role for IRF3 ubiquitination in induction of a type I IFN innate immune response. Conclusion: These results demonstrate an additional mechanism that PLpro is able to inhibit IRF3 signaling. These data suggest novel innate immune antagonism activities of PLpro that may contribute to SARS-CoV pathogenesis. Copyright 2014 Matthews et al.