• Login
    View Item 
    •   UMB Digital Archive
    • School, Graduate
    • Theses and Dissertations All Schools
    • View Item
    •   UMB Digital Archive
    • School, Graduate
    • Theses and Dissertations All Schools
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UMB Digital ArchiveCommunitiesPublication DateAuthorsTitlesSubjectsThis CollectionPublication DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    Display statistics

    Inhibition and Substrate Requirements of human Apical Sodium-dependent Bile Acid Transporter (ASBT) and Its Potential as a Prodrug Target

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Find Full text
    Author
    Zheng, Xiaowan
    Advisor
    Polli, James E.
    Date
    2010
    Type
    dissertation
    
    Metadata
    Show full item record
    Abstract
    The human apical sodium-dependent bile acid transporter (ASBT; SLC10A2) is an important mechanism for intestinal bile acid reabsorption and plays a critical role in bile acid and cholesterol homeostasis. Its physiological role impacts human health and disease. Furthermore, it is a potential candidate for prodrug targeting due to its high transporter capacity and efficiency. However, the understanding of ASBT's structural determinate of binding and translocation is limited. The work in this dissertation was carried out to study the inhibition and substrate requirement of ASBT, and subsequently to optimize the inhibition assay condition. In particular, work aimed to 1) identify FDA-approved drugs that inhibit ASBT and to derive computational models for ASBT inhibition; 2) evaluate the structural requirements of ASBT by 3D-QSAR analysis using aminopyridine and aminophenol conjugates of chenodeoxycholic acid; 3) synthesis and evaluate in vitro the potential of prolonged release prodrugs via targeting ASBT; 4) identify inhibitor concentrations to efficiently screen and measure inhibition constant Ki values against solute carrier transporters; 5) assess compound cytotoxicity on in vitro apparent transporter inhibition. Many FDA-approved drugs from diverse classes, such as the dihydropyridine calcium channel blockers and HMG CoA-reductase inhibitors were found to be ASBT inhibitors. A 3D-QSAR and a Bayesian model were developed using 38 molecules. 3D-QSAR models also were developed using C-24 conjugates. The models concluded that steric and hydrophobic features strongly influenced conjugate interaction with ASBT, and that the relative location of the pyridine nitrogen and substituent groups also modulated binding. Similar values for Ki and Kt indicated that substrate binding to ASBT was the rate-limiting step. In vitro results showed that the bile acid conjugates are potential prolonged release prodrugs with binding affinity for ASBT. Experimental conditions for Ki screening are suggested to use 10-fold the substrate affinity Kt for potent inhibitors and 100-fold Kt for nonpotent inhibitors; for Ki measurement, the inhibitor concentration range should use 0 to estimated Ki via five different inhibitor concentrations, where a low range of inhibitor concentrations can be used. For some drugs, their cytotoxicites contributed to or were associated with apparent transporter inhibition, where cytotoxicity differed between MDCK and HEK cells; cytotoxicity is suggested for future studies. Overall, the work carried out in this dissertation will aid in advancement in future prodrug design that exploits ASBT and made recommendations for the efficiency and quality of transporter inhibition assays in general.
    Description
    University of Maryland, Baltimore. Pharmaceutical Sciences. Ph.D. 2010
    Keyword
    ASBT
    bile acid transporter
    cell culture
    cytoxicity
    QSAR
    Prodrugs
    Quantitative Structure-Activity Relationship
    Identifier to cite or link to this item
    http://hdl.handle.net/10713/832
    Collections
    Theses and Dissertations School of Pharmacy
    Theses and Dissertations All Schools

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Policies | Contact Us | UMB Health Sciences & Human Services Library
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.