• Login
    View Item 
    •   UMB Digital Archive
    • School, Graduate
    • Theses and Dissertations All Schools
    • View Item
    •   UMB Digital Archive
    • School, Graduate
    • Theses and Dissertations All Schools
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UMB Digital ArchiveCommunitiesPublication DateAuthorsTitlesSubjectsThis CollectionPublication DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    Display statistics

    Identification and Characterization of Factors Associated with Biofilm Formation in Acinetobacter baumannii Surveillance Isolates

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Wallace_umaryland_0373D_10991.pdf
    Size:
    5.725Mb
    Format:
    PDF
    Download
    Author
    Wallace, Lalena
    0000-0002-7105-3607
    Advisor
    Rasko, David A.
    Date
    2018
    Embargo until
    2019-03-01
    Type
    dissertation
    
    Metadata
    Show full item record
    Abstract
    Acinetobacter baumannii is a Gram-negative nosocomial pathogen. It is responsible for a variety of infections and is among the five most common pathogens in U.S. hospitals associated with ventilator-associated pneumonia. It has been estimated that A. baumannii is responsible for approximately 45,000 hospital infections in the U.S. per year. The two main characteristics that make this organism a formidable threat in health care settings is its ability to acquire multidrug resistance and to persist on surfaces. A better understanding of the genetic factors responsible for these virulence traits is needed. Genomic comparisons of 203 A. baumannii strains, collected as part of a surveillance study at the University of Maryland Medical Center, were performed using Large-Scale BLAST Score Ratio (LS-BSR) analysis. For these genomic comparisons, the genomes were grouped according to the date and source of the strain, as well as the carbapenem resistance status. This analysis resulted in the identification of genes unique to specific phylogenomic group, site of isolation, or resistance phenotypes. In addition, this work included identification of genes exclusive to other Acinetobacter species, which may be useful in the future to positively identify A. baumannii as this is currently a difficult clinical task. Phenotypic characterization of the A. baumannii strains resulted in the identification of a phylogenetic cluster of strains that exhibited robust biofilm formation. Genomic analysis of these strains revealed several genes unique to this group and potentially associated with biofilm formation. Mutagenesis of three of these genes was performed and the ability to form robust biofilms was determined. In particular, mutagenesis of a putative pilus assembly gene resulted in significantly decreased biofilm formation, suggesting that this gene plays a key role in the robust biofilm phenotype. In addition, a transcriptional regulator was identified that may play a role in the regulation of genes associated with biofilm formation. Overall, the work presented herein has broadened our understanding of the vast diversity among surveillance isolates of A. baumannii in a single healthcare setting, and has demonstrated the utility of genotypic/phenotypic correlations to identify novel virulence factors.
    Description
    University of Maryland, Baltimore. Molecular Microbiology and Immunology. Ph.D. 2018
    Keyword
    Acinetobacter baumannii--genetics
    Biofilms
    Genomics
    Virulence Factors
    Identifier to cite or link to this item
    http://hdl.handle.net/10713/8191
    Collections
    Theses and Dissertations School of Medicine
    Theses and Dissertations All Schools

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Policies | Contact Us | UMB Health Sciences & Human Services Library
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.