• Login
    View Item 
    •   UMB Digital Archive
    • School, Graduate
    • Theses and Dissertations All Schools
    • View Item
    •   UMB Digital Archive
    • School, Graduate
    • Theses and Dissertations All Schools
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UMB Digital ArchiveCommunitiesPublication DateAuthorsTitlesSubjectsThis CollectionPublication DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    Display statistics

    Delineating Structural Requirements of hASBT: A Rational Approach to Prodrug Design

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Find Full text
    Author
    Rais, Rana
    Advisor
    Polli, James E.
    Date
    2010
    Type
    dissertation
    
    Metadata
    Show full item record
    Abstract
    Human apical sodium dependent bile acid transporter (hASBT) plays a critical role in the enterohepatic recirculation of bile acids and is a prodrug target to increase drug absorption. hASBT has been studied to determine the requirements for the binding and transport of bile acid conjugates. Methods to screen and evaluate inhibitors or substrates of this transporter were first optimized and developed. Results suggest the maximum concentration of co-solvents such as DMAC, DMF, DMSO, ethanol, and methanol that could facilitate solubilization of low solubility compounds without detrimentally impacting transporter kinetics. Additionally, extraction methods compatible with LC/MS/MS for substrates were determined. To evaluate the structural requirements of hASBT, 35 monoanionic and dianionic bile acid conjugates were synthesized and evaluated to explore the bile acid chemistry space beyond the C-24 region, and its effect on hASBT binding. Conjugates were subjected to hASBT inhibition and subsequent 3D-QSAR model development. Monoanions were potent inhibitors of hASBT. Dianion potency was due to the presence of specific intramolecular hydrogen bonding, which can be denoted a molecular switch, which allowed for increased conjugate hydrophobicity and hence activity. Validation was performed by synthesizing additional compounds and by NMR methods. Uptake studies were performed on a subset of these compounds, entailing the cellular quantification of compounds using LC-MS. hASBT kinetic parameters Km, Vmax and PP were measured for each conjugate. All mono-anionic conjugates were potent substrates while dianions, cations and zwitterions were not substrates. CSP-SAR models were derived using structural and physicochemical descriptors, and evaluated via cross-validation. The best CSP-SAR model for Km included two structural and two physiochemical descriptors, where substrate hydrophobicity enhanced affinity. A best CSP-SAR model for Km/normVmax employed one structural and three physicochemical descriptors, indicating hydrophobicity enhanced efficiency. Lastly, to exemplify hASBT as a prodrug target, three analogues of gabapentin were evaluated as substrates and inhibitors of ASBT. The compounds included two monoanionic and one dianionic conjugate. The potential prodrugs possessed high inhibitory potency along with high affinity for hASBT. The prodrugs were catalytically hydrolyzed to yield drug in Caco-2 homogenates. This work overall helps elucidate structural requirements to successfully design prodrugs to target hASBT.
    Description
    University of Maryland, Baltimore. Pharmaceutical Sciences. Ph.D. 2010
    Keyword
    3D-QSAR
    bile acids
    CSP
    hASBT
    transporter
    Prodrugs
    Quantitative Structure-Activity Relationship
    Bile Acids and Salts
    Identifier to cite or link to this item
    http://hdl.handle.net/10713/818
    Collections
    Theses and Dissertations School of Pharmacy
    Theses and Dissertations All Schools

    entitlement

     
    DSpace software (copyright © 2002 - 2022)  DuraSpace
    Quick Guide | Policies | Contact Us | UMB Health Sciences & Human Services Library
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.