• Login
    View Item 
    •   UMB Digital Archive
    • School, Graduate
    • Theses and Dissertations All Schools
    • View Item
    •   UMB Digital Archive
    • School, Graduate
    • Theses and Dissertations All Schools
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UMB Digital ArchiveCommunitiesPublication DateAuthorsTitlesSubjectsThis CollectionPublication DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    Display statistics

    Immunoglobulin switch μ sequence causes RNA polymerase II accumulation and reduces dA hypermutation

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Author
    Rajagopal, Deepa
    Advisor
    Gearhart, P. J. (Patricia J.)
    Date
    2009
    Type
    dissertation
    
    Metadata
    Show full item record
    Other Titles
    Immunoglobulin switch mu sequence causes RNA polymerase II accumulation and reduces dA hypermutation
    Abstract
    Repetitive DNA sequences in the immunoglobulin switch mu region form RNA-containing secondary structures and undergo hypermutation by activation-induced deaminase (AID). To examine how DNA structure affects transcription and hypermutation, we mapped the position of RNA polymerase II molecules and mutations across a 5-kb region spanning the intronic enhancer to the constant mu gene. For RNA polymerase II, the distribution was determined by nuclear run-on and chromatin immunoprecipitation assays in B cells from uracil-DNA glycosylase (UNG)-deficient mice stimulated ex vivo. RNA polymerases were found at a high density in DNA flanking both sides of a 1-kb repetitive sequence that forms the core of the switch region. The pileup of polymerases was similar in unstimulated and stimulated cells from Ung-/- and Aid-/- Ung-/- mice but was absent in cells from mice with a deletion of the switch region. For mutations, DNA was sequenced from Ung-/- B cells stimulated in vivo. Surprisingly, mutations of A nucleotides, which are incorporated by DNA polymerase eta, decreased 10-fold before the repetitive sequence, suggesting that the polymerase was less active in this region. We propose that altered DNA structure in the switch region pauses RNA polymerase II and limits access of DNA polymerase eta during hypermutation.
    Description
    University of Maryland in Baltimore. Molecular Microbiology and Immunology. Ph.D. 2009
    Keyword
    Somatic Hypermutation, Immunoglobulin
    Identifier to cite or link to this item
    http://hdl.handle.net/10713/814
    Collections
    Theses and Dissertations School of Medicine
    Theses and Dissertations All Schools

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Policies | Contact Us | UMB Health Sciences & Human Services Library
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.