• Login
    View Item 
    •   UMB Digital Archive
    • School, Graduate
    • Theses and Dissertations All Schools
    • View Item
    •   UMB Digital Archive
    • School, Graduate
    • Theses and Dissertations All Schools
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UMB Digital ArchiveCommunitiesPublication DateAuthorsTitlesSubjectsThis CollectionPublication DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    Display statistics

    Activity-dependent short-term depression of inhibitory synaptic currents in the hippocampus

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Author
    Whittington, Kevin C.
    Advisor
    Alger, Bradley Eugene
    Date
    2010
    Type
    dissertation
    
    Metadata
    Show full item record
    See at
    http://proxy-hs.researchport.umd.edu/login?url=http://search.proquest.com/pqdtlocal1006589/docview/758921976/fulltextPDF/
    Abstract
    An understanding of the regulation of GABAergic synaptic inhibition is important because of its influence on neuronal excitability, synaptic plasticity, and disease processes in the central nervous system. Aberrant inhibition is believed to be the cause of pathophysiological processes, such as epilepsy and mood disorders (e.g. anxiety). I seek to determine what regulates inhibitory transmission at short time scales (milliseconds - minutes) in the hippocampus, the structure that provides a cognitive map of the physical environment and, in addition, is the locus of explicit memory formation. I use electrophysiological and pharmacological tools to study inhibitory transmission at certain interneuron-pyramidal neuron synapses in the CA1 field of the rat hippocampus. Certain interneurons, those that contain cholecystokinin, also express the presynaptic cannabinoid receptor (CB1) as well as the GABAB autoreceptor, both key mediators of presynaptic inhibition. Hippocampal interneurons can fire in rhythmic, brief bursts. However, the roles of endogenous cannabinoids (endocannabinoids; eCBs) and GABAB autoreceptors in regulating inhibitory postsynaptic currents (IPSCs) elicited by such bursts has not been described. The fundamental hypothesis is that certain features of the short-term depression induced by these bursts are mediated by eCBs and others by GABA acting on GABAB autoreceptors. I find that eCB-mediated depression of pyramidal cell IPSCs develops slowly (tau ~ 30 s). IPSC depression mediated by the GABAB autoreceptor occurs in parallel with the eCB-mediated depression, but it is restricted to the time domain of hundreds of milliseconds (tau ~ 100 ms). Interestingly, although CB1 and GABAB receptors are expressed on the same nerve terminals, have the same effector (the Gi/o G protein), and the same molecular targets (Ca2+ and K+ channels), they reduce inhibitory transmission via non-interacting and distinct mechanisms. I also discovered that eCBs are released from cells via a novel mechanism. I conclude that a new form of short-term depression mediated by eCBs is present at certain inhibitory synapses of the hippocampus, and may help understand the functions of hippocampal neuronal circuits.
    Description
    University of Maryland, Baltimore. Neuroscience. Ph.D. 2010
    Keyword
    GABA
    inhibition
    short-term depression
    Endocannabinoids
    gamma-Aminobutyric Acid
    Hippocampus
    Interneurons
    Identifier to cite or link to this item
    http://hdl.handle.net/10713/804
    Collections
    Theses and Dissertations School of Medicine
    Theses and Dissertations All Schools

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Policies | Contact Us | UMB Health Sciences & Human Services Library
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.