• Login
    View Item 
    •   UMB Digital Archive
    • School, Graduate
    • Theses and Dissertations All Schools
    • View Item
    •   UMB Digital Archive
    • School, Graduate
    • Theses and Dissertations All Schools
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UMB Digital ArchiveCommunitiesPublication DateAuthorsTitlesSubjectsThis CollectionPublication DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    Display statistics

    Development of a New Generation of Dental Rechargeable Nanocomposites with Anti-caries Properties

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    AlDulaijan_umaryland_0373D_109 ...
    Size:
    5.488Mb
    Format:
    PDF
    Download
    Author
    Al Dulaijan, Yousif Ali
    Advisor
    Xu, Huakun H.
    Date
    2018
    Type
    dissertation
    
    Metadata
    Show full item record
    Abstract
    Dental composites are popular for tooth cavity restorations due to their aesthetics, conservative approach, and direct-filling abilities. However, composite restorations have limited lifetime due to several limitations, including secondary caries, fracture, minimal abrasion and wear resistance and higher marginal leakage. Indeed, secondary caries is the primary reason for composite restoration failure. Besides, several studies have shown that conventional dental composites accumulate more biofilms/plaque when compared to other restorative materials. Therefore, this dissertation aims to develop a new generation of dental composites with antibacterial effects, protein-repellent activities, and remineralization properties. Recently, a rechargeable composite was developed, but this composite has no antibacterial or protein-repellent activities. In this dissertation projects, the nanoparticles of amorphous calcium and phosphate (NACP) as remineralizing agent, dimethylaminohexadecyl methacrylate (DMAHDM) as an antibacterial monomer, and 2- metha-cryloyloxyethyl phosphorylcholine (MPC) as a protein-repellent agent were incorporated into the rechargeable composite for the first time. Mechanical properties of the new nanocomposites were evaluated. The characterization of protein adsorption was measured. A human saliva microcosm biofilm model was used to determine biofilm metabolic activity, lactic acid, and colony-forming units (CFU). Calcium (Ca) and Phosphate (P) initial ion release, recharge and re-release were investigated. All rechargeable nanocomposites have good mechanical properties that were compared to those of a commercial composite. The rechargeable nanocomposites containing MPC showed the ability to reduce protein adsorption, as well as the biofilm metabolic activity, lactic acid, and CFU. The rechargeable nanocomposites containing DMAHDM showed strong antibacterial properties through the great inhibition of biofilm metabolic activity and lactic acid, and CFU. The incorporation of bioactive agents did not compromise the Ca and P initial ion release and rechargeability. The release was maintained at the same level with increasing number of recharge cycles, indicating long-term ion release. Therefore, this new generation of rechargeable nanocomposites with long-term Ca and P ion release, antibacterial and protein-repellent activities will provide the needed therapeutic effects to remineralize and strengthen the tooth structures, prolong the restoration longevity, and inhibit secondary caries.
    Description
    University of Maryland, Baltimore. Biomedical Sciences-Dental School. Ph.D. 2018
    Keyword
    anti-biofilm
    anti-caries
    calcium phosphate nanoparticles
    dental composite
    ion recharge and re-release
    protein repellent
    Biofilms
    Composite Resins
    Dental Caries--prevention & control
    Nanoparticles--therapeutic use
    Identifier to cite or link to this item
    http://hdl.handle.net/10713/8029
    Collections
    Theses and Dissertations School of Dentistry
    Theses and Dissertations All Schools

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Policies | Contact Us | UMB Health Sciences & Human Services Library
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.