• Login
    View Item 
    •   UMB Digital Archive
    • School, Graduate
    • Theses and Dissertations All Schools
    • View Item
    •   UMB Digital Archive
    • School, Graduate
    • Theses and Dissertations All Schools
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UMB Digital ArchiveCommunitiesPublication DateAuthorsTitlesSubjectsThis CollectionPublication DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    Display statistics

    Connexins as Active Regulators of Signal Transduction in Bone

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Moorer_umaryland_0373D_10944.pdf
    Size:
    3.569Mb
    Format:
    PDF
    Download
    Author
    Moorer, Megan Carmell
    0000-0001-6581-3502
    Advisor
    Stains, Joseph P.
    Date
    2018
    Type
    dissertation
    
    Metadata
    Show full item record
    Abstract
    Intercellular communication by gap junctions plays an important role in achieving peak bone mass and determining bone quality. Deletion of the gap junction protein connexin43 (Cx43) in mice impairs bone quality (osteopenia), and results in a cortical structure resembling aging and disuse. Although it is clear that Cx43 plays a role in osteoblast function and bone mineralization, the molecular mechanism underlying the specific roles of Cx43 are not well defined. Contrastingly, osteoblasts also express connexin45 (Cx45) and its role in osteoblasts has not been extensively studied and nothing is known about its role in skeletal tissue in vivo. Cx43 and Cx45 form gap junctions with different molecular permeability, or pore sizes (<1kD <0.3kD) and seem to have opposing functions in bone biology. While gap junctions are generally thought of as passive conduits for small molecules to be shared between cells, growing evidence indicates that connexins actively contribute to downstream signaling. Modulation of Cx43 expression impacts PKCδ, ERK1/2 and β-catenin signaling pathways in vitro, which influence osteoblast gene expression and function. The regulation of signal transduction downstream of intercellular communication may involve assembly of a specific subset of effectors to the gap junction. The work presented in this thesis examines the influence of the C-terminus (CT) of connexins on osteoblast signaling and function through physical interactions with effectors like β-catenin, ERK(1/2), CREB, and PKCδ, both in vivo and in vitro. The central hypothesis of this work is that in addition to having distinct molecular permeability, each connexin can assemble a unique "interactome" of locally recruited signaling machinery that can affect downstream signaling from the gap junction and ultimately, bone cell function. We characterized the skeletal phenotype of a Cx43 truncation mouse model. The absence of the Cx43 CT in mice resulted in an osteopenic skeletal phenotype analogous to osteoblast conditional deletion of the entire Cx43 gene including cortical thinning and increased cross-sectional area, defective signaling, reduced gene expression, and altered collagen processing. These data imply that Cx43-containing gap junctions not only exchange signals, but also recruit signaling machinery to the Cx43 CT domain to optimally affect cell signaling, cell function, and bone acquisition. We also determined the requirement for both pore permeability (pore function) and signal effector protein recruitment (tail function) to Cx43 and Cx45 in osteoblast signaling and function using chimeric constructs composed of portions of Cx43 and Cx45. By luciferase reporter assays, western blot analysis, and qPCR, we found that, in general, both the Cx43 pore and Cx43 tail are required for optimal osteoblast signaling and gene expression, as Cx45 overexpression was ineffective or inhibitory in all aspects, while Cx43 overexpression stimulated signaling and gene expression. The chimeras largely mimicked Cx45 or had an intermediate effect. We also further defined the interactomes of Cx43 and Cx45 to determine their requirement for affecting osteoblast function. Through co-immunoprecipitation, our data shows binding of ERK(1/2), CAMKII, and β-catenin to Cx43 but not to Cx45, which is consistent with the idea of differential interactomes. In total, these data imply that each connexin can differentially regulate downstream signaling and gene expression from the gap junction by local recruitment of different signaling effector molecules to each connexin's CT in order to affect bone cell function and bone modeling and remodeling.
    Description
    University of Maryland, Baltimore. Molecular Medicine. Ph.D. 2018
    Keyword
    cell-cell communication
    Bone Remodeling
    Cell Communication
    Connexin 43
    Gap Junctions
    Osteoblasts
    Identifier to cite or link to this item
    http://hdl.handle.net/10713/8011
    Collections
    Theses and Dissertations School of Medicine
    Theses and Dissertations All Schools

    entitlement

     
    DSpace software (copyright © 2002 - 2021)  DuraSpace
    Quick Guide | Policies | Contact Us | UMB Health Sciences & Human Services Library
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.