• Login
    View Item 
    •   UMB Digital Archive
    • School, Graduate
    • Theses and Dissertations All Schools
    • View Item
    •   UMB Digital Archive
    • School, Graduate
    • Theses and Dissertations All Schools
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UMB Digital ArchiveCommunitiesPublication DateAuthorsTitlesSubjectsThis CollectionPublication DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    Display statistics

    Novel Signaling Mechanisms in the Regulation of Mitochondrial Dynamics

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    CherokJr_umaryland_0373D_10877.pdf
    Size:
    23.52Mb
    Format:
    PDF
    Download
    Author
    Cherok, Edward Patrick, Jr.
    Advisor
    Karbowski, Mariusz
    Date
    2017
    Type
    dissertation
    
    Metadata
    Show full item record
    Abstract
    Mitochondria are dynamic organelles that constantly undergo fission and fusion events (referred to as mitochondrial dynamics) to form highly interconnected networks within cells. These networks allow mitochondria to share resources such as mitochondrial DNA and antioxidant molecules to maintain the health of the network. Because mitochondria are the main source of production of ATP through oxidative phosphorylation, and also regulate cell death through apoptosis, it is critically important to maintain homeostasis in these organelles. Indeed, dysfunction in mitochondrial dynamics has been linked to numerous diseases, including cancer, neurodegenerative, endocrine, and cardiovascular diseases. Therefore, understanding the mechanisms by which mitochondrial dynamics contributes to the overall health of this organelle is of great interest. The primary proteins involved in the regulation of mitochondrial fusion and fission, and the mechanisms by which they act, are generally understood. It is also well accepted that mitochondrial fusion and fission is balanced; however, how these two separate processes communicate and signal to each other is currently unknown. To better understand the crosstalk between mitochondrial fission and fusion, we studied a function of the outer mitochondrial membrane associated E3 ubiquitin ligase, MARCH5. We found that MARCH5 acts as a negative regulator of mitochondrial fission through the ubiquitin-dependent degradation of the fission factor, MiD49. Shedding light on a possible mechanism by which the activities of fission factors are coordinated, we found that the Drp1 receptor, Mff, promotes MiD49 stability by negatively regulating MARCH5 activity, thereby enhancing mitochondrial fission rates. Finally, supporting molecular crosstalk between fission and fusion, we found that Mff also regulates the stability of the outer mitochondrial membrane fusion factors, Mfn1 and Mfn2, and that loss of Mff expression/activity results in reduced mitochondrial fusion rates in those cells. Thus, the studies presented here display novel crosstalk and signaling mechanisms by which fission factors are able to fine-tune mitochondrial fission and fusion rates through modification of the ubiquitin-proteasome system.
    Description
    University of Maryland, Baltimore. Molecular Medicine. Ph.D. 2017
    Keyword
    Apoptosis
    Mitochondria
    Mitochondrial Dynamics
    Ubiquitin
    Identifier to cite or link to this item
    http://hdl.handle.net/10713/7059
    Collections
    Theses and Dissertations School of Medicine
    Theses and Dissertations All Schools

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Policies | Contact Us | UMB Health Sciences & Human Services Library
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.