• Login
    View Item 
    •   UMB Digital Archive
    • School, Graduate
    • Theses and Dissertations All Schools
    • View Item
    •   UMB Digital Archive
    • School, Graduate
    • Theses and Dissertations All Schools
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UMB Digital ArchiveCommunitiesPublication DateAuthorsTitlesSubjectsThis CollectionPublication DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    Display statistics

    In-vitro Efficacy and Intracellular Mechanism of Riboflavin-Conjugated PEGylated Poly- L-Lysine Dendrimer

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Pak_umaryland_0373D_10880.pdf
    Size:
    2.518Mb
    Format:
    PDF
    Download
    Author
    Pak, Yewon
    Advisor
    Swaan, Peter W.
    Date
    2017
    Type
    dissertation
    
    Metadata
    Show full item record
    Abstract
    Chemotherapeutic drugs have advanced using different drug delivery methods to treat breast cancer specifically. This development has arisen because many classical drugs exhibit physicochemical limitations including solubility, specificity, stability, biodistribution, and therapeutic efficacy. There were numerous adverse effects associated with these limitations because chemotherapeutic drugs enter normal tissues. In order to eliminate off-target side-effect,nanoparticles were developed to target anticancer drugs to a specific carcinogenic area. As one of developing nanomedicines, dendrimers possess ability to be utilized in different administration routes and has potential to stay in the blood circulation longer while showing increased accumulation in tumor cells. Commercially available poly (amidoamine) (PAMAM) dendrimers have the potential to cause toxicity in vivo due to lack of biodegradation at sites of accumulation. Poly-L-Lysine (PLL) dendrimers are an alternative class of dendrimers that possess a biodegradable structure. PEGylated poly-l-lysine (PLL) dendrimers are known to be more favorable due to lessened cytotoxicity manifested by masking of cationic charges and avoiding uptake by Reticulo Endothelial System (RES). Using this biodegradable dendrimer, we sought to examine the effect of PEGylation as well as delivering anti-cancer drug, Doxorubicin (DOX), to a targeted internalization pathway in human breast cancer cells effectively. PEGylated PLL dendrimers also have their limitation, in which some tumor cells are not dependent upon enhanced permeability and retention (EPR) effect. As a result, riboflavin receptor, which is found to be upregulated in the exterior of breast and ovarian cancer cells, was utilized by attaching a riboflavin ligand to PEGylated PLL dendrimers in order to be actively uptaken by breast cancer cells. To target chemotherapeutic drug selectively and efficaciously, riboflavin conjugated PLL dendrimers were assessed in-vitro by investigating cytotoxicity, uptake accumulation, and intracellular colocalization. Further investigation on the endocytosis mechanism and detailed intracellular trafficking in different compartments of the cells were analyzed in order to fully understand the machinery behind delivering chemotherapeutic drugs successfully.
    Description
    University of Maryland, Baltimore. Pharmaceutical Sciences. Ph.D. 2017
    Keyword
    Dendrimers
    Doxorubicin
    Drug Delivery Systems
    Riboflavin
    Identifier to cite or link to this item
    http://hdl.handle.net/10713/7049
    Collections
    Theses and Dissertations School of Pharmacy
    Theses and Dissertations All Schools

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Policies | Contact Us | UMB Health Sciences & Human Services Library
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.