• Login
    View Item 
    •   UMB Digital Archive
    • School, Graduate
    • Theses and Dissertations All Schools
    • View Item
    •   UMB Digital Archive
    • School, Graduate
    • Theses and Dissertations All Schools
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UMB Digital ArchiveCommunitiesPublication DateAuthorsTitlesSubjectsThis CollectionPublication DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    Display statistics

    A Tale of Two Zinc Fingers: Structure and Functional Studies of CCCH type Zinc Finger Proteins CPSF30 and TTP involved in RNA Regulation

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Shimberg_umaryland_0373D_10886.pdf
    Size:
    5.493Mb
    Format:
    PDF
    Download
    Author
    Shimberg, Geoffrey Daniel
    Advisor
    Michel, Sarah L. J.
    Date
    2017
    Type
    dissertation
    
    Metadata
    Show full item record
    Abstract
    CPSF30 and TTP are non-classical zinc finger proteins (ZFS) that contain domains with a CCCH motif. CPSF30 has 5 CCCH domains and TTP has 2 CCCH domains. Both proteins are involved in RNA regulation; CPSF30 regulates pre-mRNA and TTP regulates mRNA; however, only TTP has been shown to directly bind to RNA (via its CCCH domain, targeting AU-rich sites). Given the sequence similarity between TTP and CPSF30, we hypothesized that CPSF30 directly binds AU-rich RNA sequences via its CCCH domains. To test this hypothesis, a construct of CPSF30 containing the five CCCH domains, was over-expressed and purified. Unexpectedly, CPSF30 was reddish in color, suggesting iron coordination. UV-visible, ICP-MS analysis and XAS spectroscopy revealed that the protein contains a 2Fe-2S cluster in addition to four zinc domains. The 2Fe-2S cluster utilizes a CCCH ligand set, and is the second example of this site in biology! RNA binding studies, using EMSA and fluorescence anisotropy (FA), with ?-synuclein AU-rich pre-mRNA as a target, were then performed. From these studies, we determined that (1) CPSF30 binds directly to AU-rich targets on pre-mRNA via a cooperative binding mechanism and (2) CPSF30 requires both iron and zinc coordination for RNA binding. Studies focused on Cu(I) binding to TTP will also be presented. Cu(I) is toxic in excess and there is emerging evidence that ZF sites may be target of Cu(I) toxicity. Using UV-visible and circular dichroism spectroscopies, we have determined that 3 Cu(I) ions bind to TTP and that Cu(I) binding inhibits the structure of the protein. In addition, RNA binding studies, using FA with the TNF-? AU-rich mRNA revealed that Cu(I) inhibits the TTP-RNA interaction. We propose that inhibition of TTP function by Cu(I) contributes to its mechanism of toxicity.
    Description
    University of Maryland, Baltimore. Pharmaceutical Sciences. Ph.D. 2017
    Keyword
    CPSF30
    Cu
    Fe-S cluster
    protein-RNA interaction
    TTP
    Zinc Fingers
    Identifier to cite or link to this item
    http://hdl.handle.net/10713/7047
    Collections
    Theses and Dissertations School of Pharmacy
    Theses and Dissertations All Schools

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Policies | Contact Us | UMB Health Sciences & Human Services Library
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.