• Login
    View Item 
    •   UMB Digital Archive
    • School, Graduate
    • Theses and Dissertations All Schools
    • View Item
    •   UMB Digital Archive
    • School, Graduate
    • Theses and Dissertations All Schools
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UMB Digital ArchiveCommunitiesPublication DateAuthorsTitlesSubjectsThis CollectionPublication DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    Display statistics

    Targeting Malignant Melanoma and Potential Off-target Effects in EC-coupling

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Melville_umaryland_0373D_10825.pdf
    Size:
    82.09Mb
    Format:
    PDF
    Download
    Author
    Melville, Zephan
    Advisor
    Weber, David J., Ph.D.
    Date
    2017
    Type
    dissertation
    
    Metadata
    Show full item record
    Abstract
    S100B belongs to the S100 family of Ca2+-binding proteins, a family known for calcium-dependent interactions that regulate biological processes. Upregulation of S100B in malignant melanoma (MM) downregulates p53 tumor suppressor function and is correlated with poor prognosis, making S100B a therapeutic target for MM. A fragment-based drug discovery program is underway to develop small-molecule S100B inhibitors. Compounds SC0025 and SC1990 occupy part of the S100B hydrophobic cleft, termed site 3, while compounds SBi5361 and 5363 occupy sites 1-3. Crystal structures show specific protein-inhibitor interactions to exploit in further studies for improving affinity and specificity. Heteronuclear RNA-binding protein (hnRNP) A18 is also involved in MM. A18 is upregulated in tumors and promotes tumor growth via coordination of pro-survival mRNA. The crystal structure for the RNA recognition motif (RRM) of A18 is reported here, with comparisons to the homologous RNA-binding protein, hnRNP A1. These comparisons show a conserved global fold and conservation of known RNA-binding residues. Given this, it would be impossible to design inhibitors specific for A18. Instead, it is the intrinsically disordered domain of A18 that must endow specificity, as this is not conserved. As such, this structure serves as a foundation for work with full-length A18 and drug-design efforts targeting A18 in MM. The sibling protein to S100B, S100A1 regulates several cellular processes, including Ca2+-signaling in striated muscle, through interaction with the ryanodine receptor. The crystal structure of S100A1, reported here, provides insights into S100A1-target binding specificity through key differences in the binding pockets of S100A1 and S100B. In cardiac cells, S100A1 increases Cav1 channel current amplitude, an effect blocked by inhibition of protein kinase A (PKA), implying a PKA-dependent process. As this did not require cAMP, its mechanism of activation remained unknown. Biochemical studies demonstrate that S100A1 directly activates PKA in a Ca2+-dependent manner. A functional role for this pathway is also established as PKA-dependent subcellular redistribution of HDAC4 was abolished in S100A1 knockout mice. Thus, the interaction between S100A1 and PKA provides a link between Ca2+- and PKA-signaling.
    Description
    University of Maryland, Baltimore. Biochemistry. Ph.D. 2017
    Keyword
    malignant melanoma
    protein kinase A
    S100
    S100A1
    S100B
    Excitation Contraction Coupling
    Melanoma
    Cyclic AMP-Dependent Protein Kinases
    Identifier to cite or link to this item
    http://hdl.handle.net/10713/6742
    Collections
    Theses and Dissertations School of Medicine
    Theses and Dissertations All Schools

    entitlement

     
    DSpace software (copyright © 2002 - 2021)  DuraSpace
    Quick Guide | Policies | Contact Us | UMB Health Sciences & Human Services Library
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.