• Login
    View Item 
    •   UMB Digital Archive
    • School, Graduate
    • Theses and Dissertations All Schools
    • View Item
    •   UMB Digital Archive
    • School, Graduate
    • Theses and Dissertations All Schools
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UMB Digital ArchiveCommunitiesPublication DateAuthorsTitlesSubjectsThis CollectionPublication DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    Display statistics

    The role of fast-spiking parvalbumin interneurons in prefrontal mediated cognition

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Bissonette_umaryland_0373D_102 ...
    Size:
    2.957Mb
    Format:
    PDF
    Download
    Author
    Bissonette, Gregory
    Advisor
    Powell, Elizabeth M. (Elizabeth Mary)
    Date
    2011
    Type
    dissertation
    
    Metadata
    Show full item record
    Abstract
    In a constantly changing environment, the ability to shift from one learned behavioral strategy to another more adaptive strategy is imperative. Research suggests there may be common underlying causes for the similar cognitive etiologies observed in many psychiatric disorders. One of these causes appear to be alterations in cortical GABAergic tone in the prefrontal cortices, particularly in the Orbital Frontal Cortex (OFC) which is known for its role in reversal learning and the Medial Prefrontal Cortex (mPFC) which mediates a form of behavioral flexibility. We tested a mouse model of defective frontal lobe inhibitory GABAergic anatomy on cognitive tasks, including a mouse reversal/set-shift test and fear-conditioning paradigm. We used several lines of mice: a mouse lacking the urokinase plasminogen activator receptor (uPAR) gene with a decreased GABA interneuron phenotype, a hepatocyte growth factor/scatter factor (HGF/SF) overexpressing mouse (Gfap-HGF), and a cross between the uPAR-/- and the Gfap-HGF mice, in which the interneuron deficit appears to be corrected. We have also developed a mouse serial reversal task in which we can record in vivo single unit activity in awake behaving animals, to evaluate murine OFC function during reversal learning. Further, we have studied the role developmental alterations to cortical GABAergic tone play in reversal learning. Using a transgenic animal model to produce a specific frontal cortical GABAergic deficit in adult mice, we have assessed reversal learning through behavioral and in vivo psychological techniques, using single cell and local field potential recordings. By studying genetically altered mice, our research illuminated a common neural substrate between mouse circuitry and behavior and human cortical function in psychiatric disease states. We have shown that mice have functional and dissociable prefrontal cortical structures that match rat, primate and human data. We have shown that GABAergic deficits specific to PV+ interneurons impact prefrontal mediated cognition and that OFC and mPFC cortices are differentially sensitive to growth factor alterations. We further showed that high frequency oscillations are reduced in Plaur mice performing a serial reversal task, and that murine OFC plays a critical role in mediating behavioral flexibility in a first, but not subsequent reversals.
    Description
    University of Maryland in Baltimore. Neuroscience. Ph.D. 2011
    Keyword
    GABA
    orbitofrontal cortex
    Decision Making
    gamma-Aminobutyric Acid
    Mice
    Parvalbumins
    Prefrontal Cortex
    Reversal Learning
    Identifier to cite or link to this item
    http://hdl.handle.net/10713/598
    Collections
    Theses and Dissertations All Schools
    Theses and Dissertations School of Medicine

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Policies | Contact Us | UMB Health Sciences & Human Services Library
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.