• Login
    Search 
    •   UMB Digital Archive
    • School, Graduate
    • Theses and Dissertations All Schools
    • Search
    •   UMB Digital Archive
    • School, Graduate
    • Theses and Dissertations All Schools
    • Search
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UMB Digital ArchiveCommunitiesPublication DateAuthorsTitlesSubjectsThis CollectionPublication DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Filter by Category

    Author
    Aurelian, Laure (1)
    Wales, Samantha Q. (1)Subject
    Biology, Cell (1)
    Biology, Molecular (1)Biology, Neuroscience (1)Genetic Therapy (1)
    Genetic Vectors (1)
    Herpesvirus 2, Human (1)ICP10PK (1)Neurodegenerative Diseases--therapy (1)View MoreDate Issued2008 (1)

    Statistics

    Display statistics
     

    Search

    Show Advanced FiltersHide Advanced Filters

    Filters

    Now showing items 1-1 of 1

    • List view
    • Grid view
    • Sort Options:
    • Relevance
    • Title Asc
    • Title Desc
    • Issue Date Asc
    • Issue Date Desc
    • Results Per Page:
    • 5
    • 10
    • 20
    • 40
    • 60
    • 80
    • 100

    • 1CSV
    • 1RefMan
    • 1EndNote
    • 1BibTex
    • Selective Export
    • Select All
    • Help
    Thumbnail

    Molecular mechanisms of neuroprotection by the herpes simplex virus type 2 gene ICP10PK

    Wales, Samantha Q. (2008)
    Recent progress in molecular biology has focused interest on gene therapy as a strategy for the control of chronic and acute neurodegenerative disorders. However, the selection of the appropriate gene and delivery vector is a clinical challenge. Herpes simplex virus type 2 (HSV-2) is a promising gene delivery vector, as it is neurotropic, has a large genome that is amenable to genetic manipulation, and unlike HSV-1, it does not cause encephalitis in adult humans. HSV-2 contains an anti-apoptotic serine/threonine protein kinase (known as ICP10PK), that acts as a constitutively activated growth factor receptor. It activates Ras and its downstream MEK/ERK survival pathway and inhibits apoptosis caused by virus infection of primary hippocampal cultures (Perkins et al. 2003b, Perkins et al. 2002a). The studies described in this report were designed to examine the molecular mechanisms of ICP10PK-mediated neuroprotection, and ensure that it can act independently of other viral proteins. Rat pheochromocytoma (PC12) cells stably transfected with ICP10PK (PC47 and PC70 cells) or its kinase-negative mutant p139(TM) (PC139 cells), were neuronally differentiated by culture with nerve growth factor (NGF) and examined for cell survival after NGF withdrawal. Apoptosis was seen in PC12 and PC139, but not PC47 and PC70 cells. In PC47 cells, neuroprotection was MEK- and PKA-dependent, associated with stabilization/activation of the transcription factor cAMP-responsive element binding protein (CREB), inhibition (phosphorylation) of the pro-apoptotic protein Bad and stabilization of the anti-apoptotic proteins Bcl-2 and Bag-1. In PC70 cells, neuroprotection occurred downstream of caspase activation, and involved MEK-dependent up-regulation of the anti-apoptotic protein XIAP and down-regulation of the XIAP inhibitor Smac/DIABLO. To examine whether ICP10PK is also neuroprotective in other paradigms, we examined its effect in an in vitro model of Parkinson's disease, using the neurotoxin MPP+. ICP10PK, but not p139(TM), inhibited MPP +-induced programmed cell death through inhibition of calpain-dependent Bax translocation to the mitochondria, AIF nuclear translocation, and caspase activation, indicating that the actions of ICP10PK are kinase-dependent. Collectively, the data indicate that ICP10PK has broad-spectrum neuroprotective activity that extends beyond apoptotic cellular programs. Further study of its use as a gene therapy strategy is warranted.
    DSpace software (copyright © 2002 - 2019)  DuraSpace
    Quick Guide | Policies | Contact Us
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.