• Login
    View Item 
    •   UMB Digital Archive
    • School, Graduate
    • Theses and Dissertations All Schools
    • View Item
    •   UMB Digital Archive
    • School, Graduate
    • Theses and Dissertations All Schools
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UMB Digital ArchiveCommunitiesPublication DateAuthorsTitlesSubjectsThis CollectionPublication DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    Display statistics

    Discovery, Phylogenetic Analysis, and Functional Characterization of a Unique Family of Eukaryotic Translation Initiation Factor 4E, eIF4E, From Amphidinium carterae, a Marine Dinoflagellate

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Jones_umaryland_0373D_10722.pdf
    Size:
    41.76Mb
    Format:
    PDF
    Download
    Author
    Jones, Grant Dustin
    0000-0003-1781-7319
    Advisor
    Jagus, Rosemary
    Place, Allen R.
    Date
    2016
    Type
    dissertation
    
    Metadata
    Show full item record
    Abstract
    This study investigates the eIF4E family members in Dinoflagellates. Dinoflagellates are eukaryotic algae with large genomes and a minimal role for transcriptional regulation. All mRNA in dinoflagellates is trans-spliced with a 22-nucleotide 5'-spliced-leader sequence bearing a multi-methylated cap. Like other eukaryotes, dinoflagellates encode multiple eIF4E family members that are anticipated to fulfill a range of functions. Three distinct and novel clades of eIF4E have been recognized in dinoflagellates that are separate from the three metazoan classes of eIF4E. The dinoflagellate Amphidinium carterae encodes eight eIF4E family members while Karlodinium veneficum encodes fifteen eIF4E family members. I assayed six of these family members from A. carterae for expression levels, m7GTP binding, yeast knockout complementation and affinity for three mRNA cap analogs using surface plasmon resonance (SPR). Transcripts of each are expressed through a diel cycle, but only eIF4E-1 family members and eIF4E-2a are expressed at the level of protein. Recombinant eIF4E-1 family members and eIF4E-3a, but not eIF4E-2a, are able to bind to m7GTP-agarose beads. Of the clade 1 eIF4Es, only eIF4E-1a and -1d1 complement a S. cerevisiae strain conditionally deficient in functional eIF4E, consistent with their function as translation initiation factors. However, only eIF4E-1a can be recovered from A. carterae extracts by m7GTP affinity binding. Using SPR analysis, the affinity of A. carterae eIF4E-1a for m7GTP is lower than that of murine eIF4E-1A. By the same analysis, A. carterae eIF4E-1a has a higher affinity for m7GpppG than m7GTP. In addition, K. veneficum eIF4E-1a1 displays many of the same characteristics as A. carterae eIF4E-1a. Four eIF4E-1 and one eIF4E-2 family members from K. veneficum were characterized for m7GTP binding capacity, only the eIF4E-1 family members can be pulled down with m7GTP. Three eIF4E family members were tested for their ability to interact with a putative eIF4E-interacting protein, although none interacted. Overall, the eIF4E-1a sub-clade emerges with characteristics consistent with the role of a prototypical translation initiation factor. These initial analyses will allow for a better understanding of specific translational control of gene expression through mRNA recruitment in the unique dinoflagellate lineage.
    Description
    University of Maryland, Baltimore. Molecular Microbiology and Immunology. Ph.D. 2016
    Keyword
    eIF4E
    protein translation
    translational control
    Dinoflagellida
    Eukaryotic Initiation Factor-4E
    Harmful Algal Bloom
    Protein Biosynthesis
    Surface Plasmon Resonance
    Identifier to cite or link to this item
    http://hdl.handle.net/10713/5488
    Collections
    Theses and Dissertations All Schools

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Policies | Contact Us | UMB Health Sciences & Human Services Library
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.