• Login
    View Item 
    •   UMB Digital Archive
    • School, Graduate
    • Theses and Dissertations All Schools
    • View Item
    •   UMB Digital Archive
    • School, Graduate
    • Theses and Dissertations All Schools
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UMB Digital ArchiveCommunitiesPublication DateAuthorsTitlesSubjectsThis CollectionPublication DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    Display statistics

    Regulation of Alt-NHEJ Repair and Devising Novel Targeted Therapies Involving PARP1 in Triple Negative Breast Cancer

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Chowdhury_umaryland_0373D_10692.pdf
    Size:
    2.697Mb
    Format:
    PDF
    Download
    Author
    Chowdhury, Khadiza
    Advisor
    Rassool, Feyruz V.
    Date
    2015
    Type
    dissertation
    
    Metadata
    Show full item record
    Abstract
    Triple negative breast cancers (TNBCs) are one of the most clinically challenging sub-types of breast cancers with high genomic complexity and heterogeneity making it difficult to devise targeted therapies against them. Deficiency in repair of potentially lethal DNA double strand breaks (DSBs), including deletions/mutations of BRCA1/2 homologous recombination (HR) repair genes are associated with acquisition of chromosomal aberrations and translocations that can lead to disease progression. Recent studies in TNBCs from the Rassool laboratory have reported elevated expressions of LIG3 and PARP1, components of highly error-prone alternative-non-homologous end-joining (Alt-NHEJ) pathway for repairing DSBs. Thus, deficient HR is thought to lead to compensatory repair of DSBs by Alt-NHEJ, likely leading to genomic instability. In addition, the Rassool Laboratory has reported that increased Alt-NHEJ may be a mechanism for survival in TNBCs. However, the mechanism through which TNBCs regulate Alt-NHEJ is not understood. Elevated levels of PARP1 make TNBCs potential therapeutic targets for PARP inhibitors (PARPi) that are known to catalytically inhibit DNA repair functions of PARP1 as well as trap PARP1 in chromatin, forming cytotoxic DNA-PARP1 complexes. However, clinical trials involving PARPis as single agents of treatment of BRCA-deficient or BRCA-proficient TNBCs have failed to demonstrate sustained responses, suggesting that PARPis may need to be combined with other therapies. In addition to exhibiting high levels of PARP1, our preliminary data demonstrate that TNBCs express increased levels of DNA methylation factor, DNA methyl transferase 1 (DNMT1). In addition, PARP1 has been reported to interact with DNMT1, and these above observations suggest that a combination treatment of PARPi and DNMTi might enhance anti-tumor responses in TNBCs. In this study we investigated in both BRCA -proficient and -deficient TNBCs: i) mechanism(s) underlying Alt-NHEJ regulation and ii) determined whether therapy using PARPi and DNMTi enhance anti-tumor effects, in vitro and in vivo, compared with administration of PARPis alone. The first part of our investigation led to the discovery that the oncogene C-MYC which is frequently upregulated in TNBCs, is a transcriptional regulator of Alt-NHEJ components, LIG3 and PARP1, resulting in upregulation of Alt-NHEJ activity in TNBCs. In the next part of our study, we devised a promising new strategy to improve the efficacy of PARPi when combined with DNMTi in TNBCs. Combination treatment showed significant reduction in clonogenicity and strong anti-tumor effects in BRCA -proficient and -deficient cell lines and mouse xenograft models. An initial insight into the mechanisms for this increased sensitivity of the drug combination revealed a significant increase in PARP1 trapping which correlates with increased levels of cytotoxic DSBs. Thus our study provides compelling pre-clinical results suggesting that TNBCs with elevated PARP1 and DNMT1 levels are potential targets for PARPi and DNMTi combination treatment. Since both drugs are in clinical use, these studies lay the groundwork for the development of clinical trials to treat these devastating diseases.
    Description
    University of Maryland, Baltimore. Toxicology. Ph.D. 2015
    Keyword
    Alt-NHEJ
    c-Myc
    DNA methyltransferase inhibitors
    DNMT inhibitor
    PARP inhibitors
    targeted therapy
    Poly(ADP-ribose) Polymerase Inhibitors
    Molecular Targeted Therapy
    Triple Negative Breast Neoplasms
    Identifier to cite or link to this item
    http://hdl.handle.net/10713/5037
    Collections
    Theses and Dissertations All Schools
    Theses and Dissertations School of Medicine

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Policies | Contact Us | UMB Health Sciences & Human Services Library
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.