• Login
    View Item 
    •   UMB Digital Archive
    • School, Graduate
    • Theses and Dissertations All Schools
    • View Item
    •   UMB Digital Archive
    • School, Graduate
    • Theses and Dissertations All Schools
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UMB Digital ArchiveCommunitiesPublication DateAuthorsTitlesSubjectsThis CollectionPublication DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    Display statistics

    Molecular Modeling of Macrolide Antibiotic Conformational Sampling and Interactions in the 50S Ribosomal Subunit for the Development of Novel Antibiotics

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Small_umaryland_0373D_10663.pdf
    Size:
    4.282Mb
    Format:
    PDF
    Download
    Author
    Small, Meagan Constance
    Advisor
    MacKerell, Alexander D., Jr.
    Date
    2015
    Type
    dissertation
    
    Metadata
    Show full item record
    Abstract
    Overcoming microbial resistance is a major challenge in the development of antibiotics. Bacteria limit the effectiveness of antibiotics using three major mechanisms: extrusion of the drug via efflux pumps, metabolism to an inactive metabolite, or inhibition of binding by modification of the drug target. The macrolides are an important class of antibiotics that target the ribosome and recent generation macrolides have largely addressed resistance stemming from the first two mechanisms. However, they remain susceptible to resistance due to modification of the ribosome, mainly modification of base A2058 (E. coli numbering throughout) that resides within the heart of the macrolide binding pocket. While crystal structures are available for bacterial 70S ribosomes with macrolides bound, there are none available for A2058-modified ribosomes. Thus, the molecular details underlying A2058 modification-based resistance are unclear. The motivation underlying the present work is to address the need for novel antibiotics, including those addressing A2058 modification-based resistance. To accomplish this, a three-pronged approach has been employed that incorporates both ligand- and structure-based drug design. First, utilizing a ligand-based strategy, the effects of macrolide desmethylation are investigated using molecular dynamics and a pharmacophore-based method known as Conformationally Sampled Pharmacophore (CSP). This will be the subject of Chapter 2. In Chapter 3, the focus shifts to the structure. Molecular dynamics simulations of the 50S subunit are used to understand the impact of A2058 modification on the binding of third generation macrolide antibiotic telithromycin. And, to complete the three-pronged approach, a fragment-based computer- aided drug design method known as Site-Identification by Ligand Competitive Saturation (SILCS) is applied to the ribosome leading to macrolide antibiotics with novel functionality and the potential for enhanced activity against A2058-modified ribosomes. This is the subject of Chapter 4. The methodology underlying all of this work is the use of empirical force field- based simulations, which will be the focus of Chapter 1. As an extension of force fields, Chapter 5 will deal with the optimization of small molecule aldehydes and ketones as Chapter 5 will deal with the optimization of small molecule aldehydes and ketones as well as acyclic sugars toward the development of a comprehensive CHARMM polarizable biomolecular force field based on the classical Drude oscillator.
    Description
    University of Maryland, Baltimore. Pharmaceutical Sciences. Ph.D. 2015
    Keyword
    conformationally sampled pharmacophore (CSP)
    drude polarizable force field
    macrolide antibiotics
    molecular modeling
    site identification by ligand competitive saturation
    Models, Molecular
    Ribosomes
    Identifier to cite or link to this item
    http://hdl.handle.net/10713/4848
    Collections
    Theses and Dissertations School of Pharmacy
    Theses and Dissertations All Schools

    entitlement

     
    DSpace software (copyright © 2002 - 2022)  DuraSpace
    Quick Guide | Policies | Contact Us | UMB Health Sciences & Human Services Library
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.