• Login
    View Item 
    •   UMB Digital Archive
    • School, Graduate
    • Theses and Dissertations All Schools
    • View Item
    •   UMB Digital Archive
    • School, Graduate
    • Theses and Dissertations All Schools
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UMB Digital ArchiveCommunitiesPublication DateAuthorsTitlesSubjectsThis CollectionPublication DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    Display statistics

    Development and validation of a novel tool to assess naturally acquired and vaccine induced antibody diversity to Plasmodium falciparum apical membrane antigen 1 in a pediatric and adult cohort in Bandiagara, Mali: Implications for vaccine design

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Bailey_umaryland_0373D_10637.pdf
    Size:
    5.202Mb
    Format:
    PDF
    Download
    Author
    Bailey, Jason Andrew
    Advisor
    Plowe, Christopher V.
    Date
    2015
    Type
    dissertation
    
    Metadata
    Show full item record
    Abstract
    Immunity to clinical malaria disease is acquired after years of exposure to malaria pathogens, but sterile immunity is not achieved. Malaria parasite surface antigens have used antigenic diversity in an arms race to subvert the host immune system. Nearly all vaccines targeting individual malaria antigens have proven ineffective at preventing infection or disease. Plasmodium falciparum apical membrane antigen 1 is a parasite surface antigen that is crucial for erythrocyte invasion, and a leading vaccine target. Antibodies against AMA1 have been shown in vitro, as well as in murine, non-human primate, and human models to prevent homologous parasite infection after challenge. AMA1 is an antigenically diverse molecule, with a seemingly limitless number of unique variants surveyed in the field. We populated a protein microarray with 263 unique whole-ectodomain variants of AMA1 proteins isolated from parasite genomic DNA from malaria-infected blood samples collected during a phase 2 malaria vaccine trial conducted in Bandiagara, Mali. We screened Malian children and adults at seasonal time points to measure the diversity of their immune response. Age, parasitemia, and seasonality were significant predictors of the seroreactivity to PfAMA1 variants. Children and adults vaccinated with monovalent, AMA1 subunit vaccine FMP2.1/AS02A saw a dramatic increase in seroreactivity to all AMA1 variants on the array, regardless of genetic similarity to the vaccine strain 3D7 compared to rabies vaccinated control cohorts. Seroreactivity to PfAMA1 variants is extremely collinear, and genetic variation of the strain isolated at the time of a single acute infection did not correlate with antibody seroreactivity. In a post-hoc analysis, we saw a positive correlation with preseason seroreactivity to AMA1 and odds of symptomatic versus asymptomatic infection using multivariable logistic regression. The research demonstrates the need to have an understanding of both parasite antigenic diversity in the field and a functional epitope map prior to the development of a vaccine based on AMA1.
    Description
    University of Maryland, Baltimore. Epidemiology and Preventive Medicine. Ph.D. 2015
    Keyword
    AMA1
    diversity
    Antigenic Variation
    Malaria Vaccines
    Mali
    Plasmodium falciparum
    Identifier to cite or link to this item
    http://hdl.handle.net/10713/4578
    Collections
    Theses and Dissertations All Schools
    Theses and Dissertations School of Medicine

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Policies | Contact Us | UMB Health Sciences & Human Services Library
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.