• Login
    View Item 
    •   UMB Digital Archive
    • School, Graduate
    • Theses and Dissertations All Schools
    • View Item
    •   UMB Digital Archive
    • School, Graduate
    • Theses and Dissertations All Schools
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UMB Digital ArchiveCommunitiesPublication DateAuthorsTitlesSubjectsThis CollectionPublication DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    Display statistics

    Inhibitor and Substrate Requirements of Sodium Taurocholate Cotransporting Polypeptide and Its Application to Liver Targeting

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Dong_umaryland_0373D_10584.pdf
    Size:
    3.147Mb
    Format:
    PDF
    Download
    Author
    Dong, Zhongqi
    Advisor
    Polli, James E.
    Date
    2014
    Type
    dissertation
    
    Metadata
    Show full item record
    Abstract
    Human sodium taurocholate cotransporting polypeptide (NTCP) is the bile acid transporter that is also involved in hepatitis virus infection, drug disposition and prodrug targeting. Identification of NTCP inhibitors and substrates may help to treat hepatitis B, reduce NTCP mediate drug interaction and develop prodrugs to achieve liver specific drug delivery. However the understanding of structure-activity relationship of NTCP is very limited. One objective of the work in this dissertation is to fill this gap by exploring the inhibitor and substrate requirements of human NTCP. The other objective is to utilize NTCP to achieve liver targeting of ribavirin in order to reduce its off-target side effects. A common feature pharmacophore, a quantitative pharmacophore and a Bayesian model were developed and validated using FDA approved drugs to elucidate the inhibitor requirements of human NTCP. All these in silico models were able to predict NTCP inhibitors. Twenty seven novel NTCP inhibitors were identified which cover variety of therapeutic classes. The substrate requirements of NTCP were studied using native bile acids and bile acid analogs, suggesting a role of hydroxyl pattern and steric interaction in NTCP binding and translocation. One common feature pharmacophore was developed for NTCP substrates, which was used to search a database of FDA approved drugs. Among the retrieved drugs, irbesartan and losartan were identified as novel NTCP substrates, indicating a potential role of NTCP in drug disposition. In order to reduce ribavirin off-target side effects, ribavirin-L-Val-GCDCA was developed as a prodrug to target NTCP. In vitro uptake and metabolic studies indicated that the prodrug was taken up by NTCP, released ribavirin in the mouse live S9 fraction and reduced ribavirin accumulation in red blood cells (RBC). An in vivo study in mice showed that ribavirin-L-Val-GCDCA provided almost the same ribavirin exposure in the liver as ribavirin administration, but with about 2-fold less exposure of ribavirin in RBC, plasma, and kidney, suggesting that ribavirin-L-Val-GCDCA has the potential to achieve greater liver specific delivery of ribavirin. Overall, the work carried out in this dissertation will aid to identify human NTCP inhibitors and substrates, as well as a prodrug design for liver targeting.
    Description
    University of Maryland, Baltimore. Pharmaceutical Sciences. Ph.D. 2014
    Keyword
    bile acid transporter
    drug induced liver injury (DILI)
    liver specific drug delivery
    NTCP
    pharmacophore
    Prodrugs
    Chemical and Drug Induced Liver Injury
    Identifier to cite or link to this item
    http://hdl.handle.net/10713/4372
    Collections
    Theses and Dissertations School of Pharmacy
    Theses and Dissertations All Schools

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Policies | Contact Us | UMB Health Sciences & Human Services Library
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.