• Login
    View Item 
    •   UMB Digital Archive
    • School, Graduate
    • Theses and Dissertations All Schools
    • View Item
    •   UMB Digital Archive
    • School, Graduate
    • Theses and Dissertations All Schools
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UMB Digital ArchiveCommunitiesPublication DateAuthorsTitlesSubjectsThis CollectionPublication DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    Display statistics

    An Investigation of the Default Mode Interference Hypothesis in Mild Traumatic Brain Injury

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Sours_umaryland_0373D_10510.pdf
    Size:
    21.07Mb
    Format:
    PDF
    Download
    Author
    Sours, Chandler
    Advisor
    Gullapalli, Rao P.
    Date
    2014
    Type
    dissertation
    
    Metadata
    Show full item record
    Abstract
    Traumatic brain injury (TBI) is a leading cause of death and lifelong disability throughout developed nations, resulting in an emotional burden on the patients and a vast financial burden on the nation. While the majority of these cases are mild in nature, current clinical imaging often fails to perceive the extent of this subtle injury, making it difficult to predict which of these individuals will go on to suffer from persistent post concussive symptoms. Through the use of resting state functional MRI (fMRI), resting state cerebral perfusion, and task based fMRI, we test the hypothesis that the diffuse neuronal damage associated with mild TBI (mTBI) interrupts large-scale network function resulting in cognitive and neuropsychological symptoms. The Default Mode Interference Hypothesis suggests that the interactions within and between the Default Mode Network (DMN), Task Positive Network (TPN), and Salience Network (SN) are associated with cognitive performance. Therefore, we focused our investigation upon these three networks. Using resting state fMRI on prospectively collected data, our results demonstrate reduced resting state functional connectivity (rs-FC) within the DMN and TPN, but increased rs-FC between the three networks across the acute, sub-acute, and chronic stages of injury. Furthermore, the alterations noted in rs-FC are exacerbated in mTBI patients with persistent symptoms and are associated with reduced cognitive performance. Through the use of resting state cerebral perfusion, our findings demonstrate an altered balance in network perfusion of the DMN and TPN that is more prominent in mTBI patients with greater symptom severity. Finally, through the use of task based fMRI during the N-back working memory paradigm, we note that mTBI patients reveal reduced deactivation of regions of the DMN, over recruitment of regions of the TPN, as well as regions of novel recruitment. Further, mTBI patients demonstrate reduced segregation between the DMN and TPN during the most cognitively demanding task. These findings provide strong evidence for the Default Mode Interference Hypothesis in mTBI. Through lending support that altered communication within these large-scale neural networks contributes to the persistence of post concussive symptoms, we provide a potential avenue for therapeutic intervention to mitigate post concussive symptoms.
    Description
    University of Maryland, Baltimore. Neuroscience. Ph.D. 2014
    Keyword
    functional connectivity
    functional MRI
    Brain Injuries, Traumatic
    Cognition
    Magnetic Resonance Imaging
    Post-Concussion Syndrome
    Identifier to cite or link to this item
    http://hdl.handle.net/10713/4065
    Collections
    Theses and Dissertations All Schools
    Theses and Dissertations School of Medicine

    entitlement

     
    DSpace software (copyright © 2002 - 2022)  DuraSpace
    Quick Guide | Policies | Contact Us | UMB Health Sciences & Human Services Library
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.