• Login
    View Item 
    •   UMB Digital Archive
    • School, Graduate
    • Theses and Dissertations All Schools
    • View Item
    •   UMB Digital Archive
    • School, Graduate
    • Theses and Dissertations All Schools
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UMB Digital ArchiveCommunitiesPublication DateAuthorsTitlesSubjectsThis CollectionPublication DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    Display statistics

    The Effects of Neodymium: Yttrium-Aluminum-Garnet Laser (Nd:YAG) On TiUnite® Surface at Set Distance and Energy Level in Different Ambient Environments: An in vitro Scanning Electron Microscopic Evaluation.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Versteegh_umaryland_0373N_10534.pdf
    Size:
    1.155Mb
    Format:
    PDF
    Download
    Author
    Versteegh, Thu Mai
    Advisor
    Aichelmann-Reidy, Mary Beth
    Date
    2014
    Type
    dissertation
    
    Metadata
    Show full item record
    Abstract
    Background: Lasers are gradually being used more for the surface treatment of contaminated implants in cases of peri-implantitis. Surface effects were recently characterized to evaluate changes to implants in a dry environment, using a single pass of a Nd:YAG laser at a variety of energy densities. The clinical surface treatment of ailing implants is usually complicated by the presence of blood and saliva. The aim of this study was to evaluate via scanning electron microscopy (SEM) the effect of a single pass of a Nd:YAG laser on the TiUnite® implant at 10mm distance and at 3.0 W energy level in different environments (dry, saline, saliva, blood). Methods: A total of eight NobelReplace® TiUnite® Tapered implants were mounted on a jig and pulled at a constant speed across a Nd:YAG laser at an energy level of 3.0W and at a distance of 10mm. Each experimental group (dry, saline, saliva, blood) consisted of two implants. Each of these two implants per group was irradiated on three different surfaces, contributing six samples to each experimental group. Each irradiated surface contributed four threads to the analysis. ImageJ software was used to calculate the area of surface alteration for each thread. Results: It was found that all irradiated implants (wet or dry) had damage on the irradiated surfaces using Nd:YAG laser at the set distance and energy level. The surface alterations on the implants included charring, blackening, loss of surface roughness, flattening, cracking, and in severe cases melting and crater formation. After one-way ANOVA analysis of all experimental groups, there was a statistically significant difference in surface alterations amongst groups (dry or wet). Verified with Tukey HSD test, it was found that there was no statistical difference in surface alterations between the saline and saliva groups. Conclusions: The application of Nd:YAG laser on TiUnite® implants regardless of the ambient environments produced surface damage when observed under SEM with the least damage observed in saline and saliva. Based on this study, it is desirable to irrigate implant surfaces with saline while using Nd:YAG in order to minimize the surface alterations seen in a blood environment.
    Description
    University of Maryland, Baltimore. Biomedical Sciences-Dental School. M.S. 2014
    Keyword
    dental lasers
    Nd:YAG
    TiUnite
    Dental Implants
    Lasers
    Peri-Implantitis
    Identifier to cite or link to this item
    http://hdl.handle.net/10713/4063
    Collections
    Theses and Dissertations All Schools
    Theses and Dissertations School of Dentistry

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Policies | Contact Us | UMB Health Sciences & Human Services Library
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.