• Login
    View Item 
    •   UMB Digital Archive
    • School, Graduate
    • Theses and Dissertations All Schools
    • View Item
    •   UMB Digital Archive
    • School, Graduate
    • Theses and Dissertations All Schools
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UMB Digital ArchiveCommunitiesPublication DateAuthorsTitlesSubjectsThis CollectionPublication DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    Display statistics

    The use of conformational sampling in CHARMM protein force field optimization and ligand-based drug design

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Shim_umaryland_0373D_10454.pdf
    Size:
    14.82Mb
    Format:
    PDF
    Download
    Author
    Shim, Jihyun
    Advisor
    MacKerell, Alexander D., Jr.
    Date
    2013
    Type
    dissertation
    
    Metadata
    Show full item record
    Abstract
    Sampling of the conformational space of biomolecules in computer simulations allows researchers to investigate atomistic details of biological phenomena such as protein folding and ligand binding. Conformational sampling based on empirical energy functions depends on the force field and is aided by enhanced simulation methods. This thesis discusses conformational sampling methods and force fields, along with application of conformational sampling to force-field optimization and ligand-based drug design. Extensive conformational sampling was performed for small peptides and drug-like molecules using temperature replica-exchange and Hamiltonian replica-exchange molecular dynamics. Obtained conformational ensembles were then used to improve peptide-backbone and side-chain parameters in the CHARMM protein force fields, thereby yielding more accurate conformational properties. Obtained ensembles were also applied to ligand-based drug design where a novel method based on the conformationally sampled pharmacophore approach was used to identify quantitative structure-activity relationships (SARs) of μ opioid receptor ligands. Based on the SARs, we proposed ligand-binding orientations related to receptor activation. The binding orientations were further investigated using simulations of selected ligands bound to the 3-dimensional -opioid receptor structures. Our studies validate ligand-based SARs and show atomistic details of ligand-receptor interactions and the mechanism of µ opioid receptor activation.
    Description
    University of Maryland, Baltimore. Pharmaceutical Sciences. Ph.D. 2013
    Keyword
    conformational sampling
    force field
    molecular dynamics
    QSAR
    Opioids
    Drug Design
    Quantitative Structure-Activity Relationship
    Identifier to cite or link to this item
    http://hdl.handle.net/10713/2983
    Collections
    Theses and Dissertations All Schools
    Theses and Dissertations School of Pharmacy

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Policies | Contact Us | UMB Health Sciences & Human Services Library
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.