• Login
    View Item 
    •   UMB Digital Archive
    • School, Graduate
    • Theses and Dissertations All Schools
    • View Item
    •   UMB Digital Archive
    • School, Graduate
    • Theses and Dissertations All Schools
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UMB Digital ArchiveCommunitiesPublication DateAuthorsTitlesSubjectsThis CollectionPublication DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    Display statistics

    The Effects of Neodymium:Yttrium-Aluminum-Garnet Laser On the TiUnite® Surface at Set Distance and Energy Levels: An in vitro Scanning Electron Microscopic Evaluation

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Ward_umaryland_0373N_10428.pdf
    Size:
    3.964Mb
    Format:
    PDF
    Download
    Author
    Ward, Melody Daroogar
    Advisor
    Reynolds, Mark A., D.D.S., Ph.D.
    Date
    2013
    Type
    dissertation
    
    Metadata
    Show full item record
    Abstract
    Background: Lasers are increasingly being used in the treatment of ailing implants with peri-implantitis. This study sought to evaluate via scanning electron microscopy (SEM) the effect of a single pass of a Nd:YAG laser on the TiUnite® implant surface at pre-determined distance and energy levels. Methods: 6 irradiated NobelReplace® TiUnite® Tapered implants were mounted on a jig and pulled at a constant speed across a Nd:YAG laser at energy levels of 0.8W, 2.0W and 3.0W and at a distance of 3mm or 10mm. Each implant provided 3 treatment surfaces, one per energy setting at the set distance. The first three threads of each implant were selected for analysis under SEM. Imaging software was used to calculate the area of surface alteration for each thread. Results: It was found that the further the laser fiber optic was from the implants the greater the affected area. The area of effect at 3mm at the different energy levels was 21,490μm2 ±7,975, 48,986μm2 ±6,195 and 47,362μm2 ±5,810 for 0.8W, 2.0W and 3.0W, respectively. For the 10mm distance, the area of effect was 11,548μm2 ±3,287, 10,723μm2 ±5,651 and 14,403μm2 ±5,435. The altered areas on the implants included charring, blackening, loss of surface roughness and in severe cases melting, blistering and loss of surface layer. After repeated ANOVA, it was found that distance had a greater effect on implant surface alteration at higher energy levels (2.0W and 3.0W) than at the lower energy level of 0.8W indicating that distance becomes a more significant contributor to implant surface damage when higher energy levels are used. Conclusions: The application of Nd:YAG laser on all implants at all distances produced surface damage when observed under SEM with distance having a greater effect on implant surface changes at higher wattages. It remains to be investigated whether this surface damage is a hindrance to re-osseointegration after treatment of implants with laser.
    Description
    University of Maryland, Baltimore. Biomedical Sciences. M.S. 2013
    Keyword
    Nd:YAG
    Neodymium:Yttrium-Aluminum-Garnet
    TiUnite
    Dental Implants
    Lasers
    Peri-Implantitis
    Identifier to cite or link to this item
    http://hdl.handle.net/10713/2784
    Collections
    Theses and Dissertations All Schools
    Theses and Dissertations School of Dentistry

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Policies | Contact Us | UMB Health Sciences & Human Services Library
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.