• Login
    View Item 
    •   UMB Digital Archive
    • School, Graduate
    • Theses and Dissertations All Schools
    • View Item
    •   UMB Digital Archive
    • School, Graduate
    • Theses and Dissertations All Schools
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UMB Digital ArchiveCommunitiesPublication DateAuthorsTitlesSubjectsThis CollectionPublication DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    Display statistics

    The evaluation of the metabolism of N-methylspiperone and its effect on kinetic and receptor binding parameter estimation

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Find Full text
    Author
    Miller, Ann Kay
    Advisor
    Young, David G.
    Date
    1992
    Type
    dissertation
    
    Metadata
    Show full item record
    Abstract
    N-methylspiperone (NMSP) is a butyrophenone derivative that binds preferentially to dopamine D2 receptors in the brain of animals and man. This dissertation describes the development of a specific and sensitive HPLC assay for quantitation of NMSP in guinea pig plasma and brain. The metabolism of NMSP is studied in guinea pigs and rats after multiple intraperitoneal injections of NMSP. Three important metabolites found in guinea pig plasma and brain were identified as reduced NMSP, spiperone, and reduced spiperone. Only spiperone was found in rats. Furthermore, reduced NMSP was found to be a radiolabeled metabolite after single or multiple doses of {dollar}\sp3{dollar}H-NMSP and after a single dose of {dollar}\sp{lcub}11{rcub}{dollar}C-NMSP in guinea pigs. The plasma disposition of NMSP and {dollar}\sp3{dollar}H-NMSP in guinea pigs after a single intravenous dose was best described by a biexponential decline. The half-lives of NMSP distribution and elimination were 11.7 and 289 minutes, respectively. Reduced NMSP was found to follow a mono- or biexponential decline in plasma after a single intravenous dose. The mean elimination half-life was 54.7 minutes. The "donor-recipient" parameter estimation method was evaluated for usefulness in NMSP receptor binding studies. This method includes estimation of transfer rates of formation of a radiolabeled metabolite in the body and transfer of the metabolite into and out of the brain. Data was simulated for a radiolabeled parent compound and its radiolabeled metabolite in the plasma and in the two types of brain regions--those with and without specific binding of parent to the receptors. All parameters except the rate constant of metabolite elimination from the body were estimated within 1% of the true value. Parameters estimated by non-linear least squares regression analysis were found to be similar to those from the "donor-recipient" method. In evaluating the "donor-recipient" method when specific binding is assumed to be reversible, only K23 was poorly estimated. The "donor-recipient" method does provide accurate estimation of all parameters of interest in the receptor binding models determined in this analysis. However, K23, the rate of sequestration into the brain compartment, is only accurately estimated when it is truly represented by a first order process and K23 is zero. (Abstract shortened with permission of author.)
    Description
    University of Maryland, Baltimore. Pharmacokinetics. Ph.D. 1992
    Keyword
    Biology, Neuroscience
    Health Sciences, Pharmacology
    Identifier to cite or link to this item
    http://hdl.handle.net/10713/2563
    Collections
    Theses and Dissertations All Schools
    Theses and Dissertations School of Pharmacy

    entitlement

     
    DSpace software (copyright © 2002 - 2022)  DuraSpace
    Quick Guide | Policies | Contact Us | UMB Health Sciences & Human Services Library
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.