• Login
    View Item 
    •   UMB Digital Archive
    • School, Graduate
    • Theses and Dissertations All Schools
    • View Item
    •   UMB Digital Archive
    • School, Graduate
    • Theses and Dissertations All Schools
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UMB Digital ArchiveCommunitiesPublication DateAuthorsTitlesSubjectsThis CollectionPublication DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    Display statistics

    H. pylori NikR: a new nickel regulatory protein

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    West_umaryland_0373D_10349.pdf
    Size:
    5.696Mb
    Format:
    PDF
    Download
    Author
    West, Abby L.
    Advisor
    Michel, Sarah L. J.
    Date
    2012
    Type
    dissertation
    
    Metadata
    Show full item record
    Abstract
    My research has focused on understanding the mechanism of DNA recognition by the nickel regulatory protein NikR from Helicobacter pylori (HpNikR). H. pylori colonize the highly acidic gastric epithelium of the human stomach. One feature that enables H. pylori to survive under acidic conditions is the ability to release large quantities of ammonia, produced by the NikR regulated enzyme urease, to neutralize its immediate environment. HpNikR also regulates the expression of multiple other genes as either an activator or repressor including those involved in nickel ion homeostasis, acid adaptation and iron uptake. The genes for which direct regulation have been established contain variable recognition sequences; and the biophysical basis for DNA recognition and discrimination by HpNikR is currently unresolved. Crystallographic studies produced an unanticipated structure of Holo-HpNikR in which nickel ions are coordinated to two distinct binding sites: a 4-coordinate, square planar site (called the 4-site) and a 5/6-coordinate square-pyramidal/octahedral site (called the 5/6-site) in contrast to previous NikR structures where all four ions are coordinated to square planar sites. A mutant of HpNikR called H74A was designed to force all four nickels to the 4-sites, and the crystal structure confirmed singular coordination. DNA binding studies revealed that when Ni(II) is restricted from the 5/6 sites, DNA binding properties are abrogated compared to Holo-HpNikR. These data support a mechanism in which nickel coordination to the 5/6 site of HpNikR is critical for function. A reporter assay was also developed to monitor transcription of urease as a function of nickel concentration and promoter sequence directly within H. pylori. Unexpectedly, initial findings from this study directed us towards a novel cooperative effect in vivo where the presence of active HpArsR-P, from the ArsRS two component system, in conjunction with HpNikR leads to maximum Ni(II) dependent induction of urease. HpArsR is also able to bind the HpNikR PureA mutant operator sites in vitro as determined via fluorescence anisotropy at neutral pH with a high nanomolar to low micromolar affinity. Through the use of both in vitro and in vivo approaches, a novel model has been proposed for DNA recognition by HpNikR.
    Description
    University of Maryland in Baltimore. Pharmaceutical Sciences. Ph.D. 2012
    Keyword
    DNA recognition
    biophysical theory and modeling
    DNA, Bacterial--chemistry
    Helicobacter pylori
    Gene Expression Regulation, Bacterial--genetics
    Identifier to cite or link to this item
    http://hdl.handle.net/10713/2307
    Collections
    Theses and Dissertations All Schools
    Theses and Dissertations School of Pharmacy

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Policies | Contact Us | UMB Health Sciences & Human Services Library
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.