• Login
    View Item 
    •   UMB Digital Archive
    • School, Graduate
    • Theses and Dissertations All Schools
    • View Item
    •   UMB Digital Archive
    • School, Graduate
    • Theses and Dissertations All Schools
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UMB Digital ArchiveCommunitiesPublication DateAuthorsTitlesSubjectsThis CollectionPublication DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    Display statistics

    Cellular Changes in Response to Embedded Fragments: An Animal Surveillance Model

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Shinn_umaryland_0373D_10366.pdf
    Size:
    15.42Mb
    Format:
    PDF
    Download
    Author
    Shinn, Antoinette M.
    Advisor
    Johantgen, Mary E.
    Date
    2012
    Type
    dissertation
    
    Metadata
    Show full item record
    Abstract
    Background: Explosive munitions have wounded approximately 50,000 service members in the Global War on Terrorism. Medical surveillance programs use traditional x-ray as a method of monitoring embedded metal fragments in the body. X-ray replicates a two-dimensional image of bone and air filled structures, it does not display the soft tissue. Tomographic imaging allows specific measured slices of the subject to be obtained in a quantitative manner to display anatomic structures like tumors. Purpose: The purpose of this pilot study was to determine the sensitivity and specificity of small animal Positron Emission Tomography - Computed Tomography (PET-CT) in identifying metabolic changes in muscle tissue surrounding a heavy metal tungsten alloy and compare this imaging to traditional x-ray images. Methods: In the first experiment Fischer 344 male rats were randomly assigned to three groups (implanted with heavy metal tungsten alloy (HMTA) pellets, tantalum (Ta) pellets as the control metal or Sham control without pellet implantation). One rat was in each category for the first experiment. Animals received a series of x-rays and 18F-fluoro-2-deoxy-D-glucose (FDG) and18F-3'-fluoro-3'-deoxy-L-thymidine (FLT) PET-CT scans over 16 weeks. The second experiment used a larger sample of (2 Sham, 15 Ta, 15 HMTA) animals and FDG PET-CT scans. Tracer uptake was quantified using the standard unit value (SUV). Imaging data were compared between groups and over time. Sensitivity and specificity were determined. Receiver Operating Characteristic (ROC) curve and the area under the curve (AUC) were calculated. Histopathology was assessed by a pathologist, blinded to treatment group. Results: Increased FDG uptake was associated with an aggressive malignancy in the HMTA implanted rats. A significant difference in FDG uptake between the Ta and HMTA animals and a significant change in tracer uptake over the sixteen weeks for the HMTA animals was found. PET-CT imaging had a sensitivity of 86% and specificity of 100% and the area under the curve (AUC) .938. Conclusion: PET-CT imaging provided information on metabolic changes occurring at the site of the implanted metals not available from x-rays. PET-CT imaging and can be a useful tool in the surveillance of toxic embedded fragments.
    Description
    University of Maryland in Baltimore. Nursing. Ph.D. 2012
    Keyword
    cell biology
    Blast Injuries
    Positron Emission Tomography Computed Tomography
    Wounds and Injuries
    Identifier to cite or link to this item
    http://hdl.handle.net/10713/2305
    Collections
    Theses and Dissertations All Schools
    Theses and Dissertations School of Nursing

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Policies | Contact Us | UMB Health Sciences & Human Services Library
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.