• Login
    View Item 
    •   UMB Digital Archive
    • School, Graduate
    • Theses and Dissertations All Schools
    • View Item
    •   UMB Digital Archive
    • School, Graduate
    • Theses and Dissertations All Schools
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UMB Digital ArchiveCommunitiesPublication DateAuthorsTitlesSubjectsThis CollectionPublication DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    Display statistics

    The Role and Inhibition of S100B in Melanoma Cell Signaling

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Hartman_umaryland_0373D_10331.pdf
    Size:
    2.874Mb
    Format:
    PDF
    Download
    Author
    Hartman, Kira Gianni
    Advisor
    Weber, David J., Ph.D.
    Date
    2012
    
    Metadata
    Show full item record
    Abstract
    The calcium–binding protein S100B is an effective and extensively used prognostic marker for melanoma, with increasing S100B being predictive of disease stage, increased recurrence, and low survival. Establishing the mechanism by which S100B alters cell signaling provides insight into how it may facilitate the progression of melanoma and aid in developing new pharmacological drugs to inhibit cancer advancement. To evaluate the significance of S100B in melanoma, knock–down and over–expression studies were conducted, finding a positive correlation between S100B expression and cell viability, as well as ERK phosphorylation. However, phosphorylation of RSK, a downstream ERK target, was determined to have an inverse relationship with S100B. Over–expression of a calcium–binding mutant S100B yields neither effect, indicating that each response is calcium–dependent. Pull–down experiments established the direct calcium–dependent binding of S100B to the C–terminus of RSK and kinase assays demonstrated that S100B prevents RSK phosphorylation at Thr573. Over–expression of S100B in melanoma cells reduces the phosphorylation of RSK, sequestering it in the cytosol. Conversely, cells with diminished S100B expression exhibited increased staining of phosphorylated RSK within the nucleus. Together these data are consistent with a mechanism in which elevated S100B binds RSK directly in a calcium–dependent manner, preventing ERK–mediated phosphorylation and subsequent nuclear translocation. Thus, S100B uniquely affects MAPK signaling by increasing levels of phosphorylated ERK while simultaneously preventing the phosphorylation of RSK. Capitalizing on this discovery, in addition to previously known S100B interactions such as with p53, we are searching for S100B inhibitors that will prevent cancer progression. To this end, in vitro FPCA was employed to rapidly screen 2,000 compounds, establishing whether they bind Ca<super>2+</super>–loaded S100B and inhibit S100B target complex formation. Building upon this, we developed a cell–based high throughput assay capable of screening an extensive library of 14,400 compounds, in addition to 26 putative S100B inhibitors identified through FPCA, by comparing their effects on cells expressing elevated S100B to cells where S100B has been significantly knocked–down. The desired endpoint of this research is the development of a drug with therapeutic activity for the treatment of malignant melanoma and/or other cancers with elevated S100B.
    Description
    University of Maryland, Baltimore. Molecular Medicine. Ph.D. 2012
    Keyword
    ERK
    MAPK
    RSK
    S100B
    Calcium
    Melanoma
    Identifier to cite or link to this item
    http://hdl.handle.net/10713/2144
    Collections
    Theses and Dissertations All Schools
    Theses and Dissertations School of Medicine

    entitlement

     
    DSpace software (copyright © 2002 - 2022)  DuraSpace
    Quick Guide | Policies | Contact Us | UMB Health Sciences & Human Services Library
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.