Biological, psychological, and sociocultural contributions to pain processing in the central nervous system: A whole-person approach to understanding chronic pain
Abstract
Introduction: Chronic pain affects approximately 20% of the global population, yet effective treatments remain elusive. This study employs a biopsychosocial model, recognizing the importance of all facets of life, to investigate the complex interactions of biological, psychological, and sociocultural factors influencing pain outcomes and pain processing in the central nervous system. Methods: This project utilized functional magnetic resonance imaging to assess pain severity, interference, and endogenous pain modulation via placebo analgesia in a sample of participants with temporomandibular disorder. Brain-age difference was estimated via a pre-trained Gaussian Process Model using cortical thickness as a predictor of pain outcomes. Structural equation modeling and high dimensional multivariate mediation were employed to examine the influence of pain catastrophizing (PC) on pain outcomes. Differences in pain outcomes between religious/spiritual (R/S) and atheist participants were also explored. Results: TMD participants exhibited accelerated brain aging which was associated with pain severity and interference but not placebo analgesia. Structural equation modeling revealed that PC did not mediate pain outcomes or influence placebo analgesia. However, resting-state functional connectivity between the hippocampus and cuneal cortex mediated the relationship between PC and pain interference. Although there were no significant differences in behavioral outcomes between R/S and atheist participants, differential connectivity underlying these outcomes was found, such that atheist participants exhibited greater reliance on low-level sensory input compared to R/S participants who utilized higher cognitive regions for better emotional regulation of pain. Conclusion: This work provides valuable insights into the neurobiological mechanisms underlying how brain age, PC, and R/S factors influence chronic pain and placebo-induced pain reductions. By unraveling the complexities of pain processing using a whole-person approach, this research promotes a more holistic understanding of chronic pain and contributes to the development of more effective interventions for individuals suffering from chronic pain.Description
University of Maryland, Baltimore, School of Medicine, Ph.D., 2023Keyword
resting state functional connectivitybrain age
Chronic Pain
Magnetic Resonance Imaging
Catastrophization
Religion and Medicine