• Login
    View Item 
    •   UMB Digital Archive
    • School, Graduate
    • Theses and Dissertations All Schools
    • View Item
    •   UMB Digital Archive
    • School, Graduate
    • Theses and Dissertations All Schools
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UMB Digital ArchiveCommunitiesPublication DateAuthorsTitlesSubjectsThis CollectionPublication DateAuthorsTitlesSubjects

    My Account

    LoginRegister

    Statistics

    Display statistics

    The Anti-tumor Action and Skeletal Toxicity of Palovarotene, Retinoid Nuclear Receptor Gamma Agonists in Multiple Osteochondroma Mouse Model

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    Garcia_umaryland_0373D_11395.pdf
    Embargo:
    2023-07-01
    Size:
    228.8Mb
    Format:
    PDF
    Download
    Author
    Garcia, Sonia Arely cc
    Advisor
    Enomoto-Iwamoto, Motomi
    Date
    2022
    Type
    dissertation
    
    Metadata
    Show full item record
    Abstract
    Osteochondromas are cartilage-capped tumors that arise near growing physis and are the most common benign bone tumor in children. They can lead to skeletal deformity, pain, loss of motion and neurovascular compression. Multiple osteochondromas (MO) can occur from a hereditary cancer syndrome in which EXT1 and EXT2 are the major causative genes. Currently, treatment is limited to surgical resection only. There are no available FDA-approved drug therapies for MO. Previous translational research suggested that retinoic acid nuclear receptor gamma agonist (RARγ) suppresses ectopic cartilage formation including osteochondromas in rodent models. A clinical trial of the systemic treatment of Palovarotene, a RARγ agonist for MO (NCT03442985) trial was terminated due to concerns of skeletal toxicity observed in pediatric patients in a different clinical trial. The purposes of this project are to determine whether refining systemic and local RARγ agonist treatment inhibits pre-existing osteochondroma growth, to minimize the adverse actions of the RARγ agonists on adjacent growth plate, and to elucidate the molecular action of RARγ agonists on osteochondromas. A mouse model involving the conditional deletion of EXT1 in cartilage was used as MO animal model. Palovarotene (1.76 mg/Kg, daily) treatment for 2 weeks, strongly suppressed osteochondroma development in the wrists and ribs. Osteochondromas became evident under the treatment with the same dose for an additional 2 weeks, however, was significantly reduced with the increasing the Palovarotene dose to 4.0 mg/Kg. However, this increase in the drug dose exhibited skeletal toxicity, including changes in trabecular bone, thinning of the cortical bone and articular cartilage deformity. Local delivery is an alternative theory to overcome systemic exposure concerns. Two-week local application of RARγ-loaded nanoparticles inhibited osteochondroma volume in the writs of our osteochondroma model without causing effects on limb lengths compared to vehicle control. Mechanistic studies demonstrated that RARγ agonist treatment of human osteochondroma explants inhibited matrix synthesis, stimulated matrix degradation and induced cell death while systemic treatment inhibited matrix synthesis and stimulated matrix degradation in our osteochondroma mouse model. These findings indicate that RARγ agonist exerts anti-tumor function, and that local drug therapy may be an alternative to avoid systemic toxicity.
    Description
    University of Maryland, Baltimore. Molecular Medicine. Ph.D. 2022.
    Keyword
    Cartilage
    Bone and Bones
    Neoplasms
    Osteochondroma
    Retinoids
    Identifier to cite or link to this item
    http://hdl.handle.net/10713/20359
    Collections
    Theses and Dissertations School of Medicine
    Theses and Dissertations All Schools

    entitlement

     
    DSpace software (copyright © 2002 - 2023)  DuraSpace
    Quick Guide | Policies | Contact Us | UMB Health Sciences & Human Services Library
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.